litellm-mirror/litellm/llms/anthropic/common_utils.py
Krish Dholakia 5bbf906c83
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 44s
Litellm code qa common config (#7113)
* feat(base_llm): initial commit for common base config class

Addresses code qa critique https://github.com/andrewyng/aisuite/issues/113#issuecomment-2512369132

* feat(base_llm/): add transform request/response abstract methods to base config class

* feat(cohere-+-clarifai): refactor integrations to use common base config class

* fix: fix linting errors

* refactor(anthropic/): move anthropic + vertex anthropic to use base config

* test: fix xai test

* test: fix tests

* fix: fix linting errors

* test: comment out WIP test

* fix(transformation.py): fix is pdf used check

* fix: fix linting error
2024-12-09 15:58:25 -08:00

46 lines
1.4 KiB
Python

"""
This file contains common utils for anthropic calls.
"""
from typing import Optional, Union
import httpx
from litellm.llms.base_llm.transformation import BaseLLMException
class AnthropicError(BaseLLMException):
def __init__(
self,
status_code: int,
message,
headers: Optional[httpx.Headers] = None,
):
super().__init__(status_code=status_code, message=message, headers=headers)
def process_anthropic_headers(headers: Union[httpx.Headers, dict]) -> dict:
openai_headers = {}
if "anthropic-ratelimit-requests-limit" in headers:
openai_headers["x-ratelimit-limit-requests"] = headers[
"anthropic-ratelimit-requests-limit"
]
if "anthropic-ratelimit-requests-remaining" in headers:
openai_headers["x-ratelimit-remaining-requests"] = headers[
"anthropic-ratelimit-requests-remaining"
]
if "anthropic-ratelimit-tokens-limit" in headers:
openai_headers["x-ratelimit-limit-tokens"] = headers[
"anthropic-ratelimit-tokens-limit"
]
if "anthropic-ratelimit-tokens-remaining" in headers:
openai_headers["x-ratelimit-remaining-tokens"] = headers[
"anthropic-ratelimit-tokens-remaining"
]
llm_response_headers = {
"{}-{}".format("llm_provider", k): v for k, v in headers.items()
}
additional_headers = {**llm_response_headers, **openai_headers}
return additional_headers