litellm-mirror/litellm/proxy/spend_tracking/spend_tracking_utils.py
Ishaan Jaff 5daf40ce24 Merge pull request #9642 from BerriAI/litellm_mcp_improvements_expose_sse_urls
[Feat] - MCP improvements, add support for using SSE MCP servers
2025-03-29 20:04:43 -07:00

394 lines
13 KiB
Python

import hashlib
import json
import secrets
from datetime import datetime
from datetime import datetime as dt
from datetime import timezone
from typing import Any, List, Optional, cast
from pydantic import BaseModel
import litellm
from litellm._logging import verbose_proxy_logger
from litellm.litellm_core_utils.core_helpers import get_litellm_metadata_from_kwargs
from litellm.proxy._types import SpendLogsMetadata, SpendLogsPayload
from litellm.proxy.utils import PrismaClient, hash_token
from litellm.types.utils import StandardLoggingMCPToolCall, StandardLoggingPayload
from litellm.utils import get_end_user_id_for_cost_tracking
def _is_master_key(api_key: str, _master_key: Optional[str]) -> bool:
if _master_key is None:
return False
## string comparison
is_master_key = secrets.compare_digest(api_key, _master_key)
if is_master_key:
return True
## hash comparison
is_master_key = secrets.compare_digest(api_key, hash_token(_master_key))
if is_master_key:
return True
return False
def _get_spend_logs_metadata(
metadata: Optional[dict],
applied_guardrails: Optional[List[str]] = None,
batch_models: Optional[List[str]] = None,
mcp_tool_call_metadata: Optional[StandardLoggingMCPToolCall] = None,
) -> SpendLogsMetadata:
if metadata is None:
return SpendLogsMetadata(
user_api_key=None,
user_api_key_alias=None,
user_api_key_team_id=None,
user_api_key_org_id=None,
user_api_key_user_id=None,
user_api_key_team_alias=None,
spend_logs_metadata=None,
requester_ip_address=None,
additional_usage_values=None,
applied_guardrails=None,
status=None or "success",
error_information=None,
proxy_server_request=None,
batch_models=None,
mcp_tool_call_metadata=None,
)
verbose_proxy_logger.debug(
"getting payload for SpendLogs, available keys in metadata: "
+ str(list(metadata.keys()))
)
# Filter the metadata dictionary to include only the specified keys
clean_metadata = SpendLogsMetadata(
**{ # type: ignore
key: metadata[key]
for key in SpendLogsMetadata.__annotations__.keys()
if key in metadata
}
)
clean_metadata["applied_guardrails"] = applied_guardrails
clean_metadata["batch_models"] = batch_models
clean_metadata["mcp_tool_call_metadata"] = mcp_tool_call_metadata
return clean_metadata
def generate_hash_from_response(response_obj: Any) -> str:
"""
Generate a stable hash from a response object.
Args:
response_obj: The response object to hash (can be dict, list, etc.)
Returns:
A hex string representation of the MD5 hash
"""
try:
# Create a stable JSON string of the entire response object
# Sort keys to ensure consistent ordering
json_str = json.dumps(response_obj, sort_keys=True)
# Generate a hash of the response object
unique_hash = hashlib.md5(json_str.encode()).hexdigest()
return unique_hash
except Exception:
# Return a fallback hash if serialization fails
return hashlib.md5(str(response_obj).encode()).hexdigest()
def get_spend_logs_id(
call_type: str, response_obj: dict, kwargs: dict
) -> Optional[str]:
if call_type == "aretrieve_batch":
# Generate a hash from the response object
id: Optional[str] = generate_hash_from_response(response_obj)
else:
id = cast(Optional[str], response_obj.get("id")) or cast(
Optional[str], kwargs.get("litellm_call_id")
)
return id
def get_logging_payload( # noqa: PLR0915
kwargs, response_obj, start_time, end_time
) -> SpendLogsPayload:
from litellm.proxy.proxy_server import general_settings, master_key
if kwargs is None:
kwargs = {}
if response_obj is None or (
not isinstance(response_obj, BaseModel) and not isinstance(response_obj, dict)
):
response_obj = {}
# standardize this function to be used across, s3, dynamoDB, langfuse logging
litellm_params = kwargs.get("litellm_params", {})
metadata = get_litellm_metadata_from_kwargs(kwargs)
metadata = _add_proxy_server_request_to_metadata(
metadata=metadata, litellm_params=litellm_params
)
completion_start_time = kwargs.get("completion_start_time", end_time)
call_type = kwargs.get("call_type")
cache_hit = kwargs.get("cache_hit", False)
usage = cast(dict, response_obj).get("usage", None) or {}
if isinstance(usage, litellm.Usage):
usage = dict(usage)
if isinstance(response_obj, dict):
response_obj_dict = response_obj
elif isinstance(response_obj, BaseModel):
response_obj_dict = response_obj.model_dump()
else:
response_obj_dict = {}
id = get_spend_logs_id(call_type or "acompletion", response_obj_dict, kwargs)
standard_logging_payload = cast(
Optional[StandardLoggingPayload], kwargs.get("standard_logging_object", None)
)
end_user_id = get_end_user_id_for_cost_tracking(litellm_params)
api_key = metadata.get("user_api_key", "")
if api_key is not None and isinstance(api_key, str):
if api_key.startswith("sk-"):
# hash the api_key
api_key = hash_token(api_key)
if (
_is_master_key(api_key=api_key, _master_key=master_key)
and general_settings.get("disable_adding_master_key_hash_to_db") is True
):
api_key = "litellm_proxy_master_key" # use a known alias, if the user disabled storing master key in db
if (
standard_logging_payload is not None
): # [TODO] migrate completely to sl payload. currently missing pass-through endpoint data
api_key = (
api_key
or standard_logging_payload["metadata"].get("user_api_key_hash")
or ""
)
end_user_id = end_user_id or standard_logging_payload["metadata"].get(
"user_api_key_end_user_id"
)
else:
api_key = ""
request_tags = (
json.dumps(metadata.get("tags", []))
if isinstance(metadata.get("tags", []), list)
else "[]"
)
if (
_is_master_key(api_key=api_key, _master_key=master_key)
and general_settings.get("disable_adding_master_key_hash_to_db") is True
):
api_key = "litellm_proxy_master_key" # use a known alias, if the user disabled storing master key in db
_model_id = metadata.get("model_info", {}).get("id", "")
_model_group = metadata.get("model_group", "")
# clean up litellm metadata
clean_metadata = _get_spend_logs_metadata(
metadata,
applied_guardrails=(
standard_logging_payload["metadata"].get("applied_guardrails", None)
if standard_logging_payload is not None
else None
),
batch_models=(
standard_logging_payload.get("hidden_params", {}).get("batch_models", None)
if standard_logging_payload is not None
else None
),
mcp_tool_call_metadata=(
standard_logging_payload["metadata"].get("mcp_tool_call_metadata", None)
if standard_logging_payload is not None
else None
),
)
special_usage_fields = ["completion_tokens", "prompt_tokens", "total_tokens"]
additional_usage_values = {}
for k, v in usage.items():
if k not in special_usage_fields:
if isinstance(v, BaseModel):
v = v.model_dump()
additional_usage_values.update({k: v})
clean_metadata["additional_usage_values"] = additional_usage_values
if litellm.cache is not None:
cache_key = litellm.cache.get_cache_key(**kwargs)
else:
cache_key = "Cache OFF"
if cache_hit is True:
import time
id = f"{id}_cache_hit{time.time()}" # SpendLogs does not allow duplicate request_id
try:
payload: SpendLogsPayload = SpendLogsPayload(
request_id=str(id),
call_type=call_type or "",
api_key=str(api_key),
cache_hit=str(cache_hit),
startTime=_ensure_datetime_utc(start_time),
endTime=_ensure_datetime_utc(end_time),
completionStartTime=_ensure_datetime_utc(completion_start_time),
model=kwargs.get("model", "") or "",
user=metadata.get("user_api_key_user_id", "") or "",
team_id=metadata.get("user_api_key_team_id", "") or "",
metadata=json.dumps(clean_metadata),
cache_key=cache_key,
spend=kwargs.get("response_cost", 0),
total_tokens=usage.get("total_tokens", 0),
prompt_tokens=usage.get("prompt_tokens", 0),
completion_tokens=usage.get("completion_tokens", 0),
request_tags=request_tags,
end_user=end_user_id or "",
api_base=litellm_params.get("api_base", ""),
model_group=_model_group,
model_id=_model_id,
requester_ip_address=clean_metadata.get("requester_ip_address", None),
custom_llm_provider=kwargs.get("custom_llm_provider", ""),
messages=_get_messages_for_spend_logs_payload(
standard_logging_payload=standard_logging_payload, metadata=metadata
),
response=_get_response_for_spend_logs_payload(standard_logging_payload),
)
verbose_proxy_logger.debug(
"SpendTable: created payload - payload: %s\n\n",
json.dumps(payload, indent=4, default=str),
)
return payload
except Exception as e:
verbose_proxy_logger.exception(
"Error creating spendlogs object - {}".format(str(e))
)
raise e
def _ensure_datetime_utc(timestamp: datetime) -> datetime:
"""Helper to ensure datetime is in UTC"""
timestamp = timestamp.astimezone(timezone.utc)
return timestamp
async def get_spend_by_team_and_customer(
start_date: dt,
end_date: dt,
team_id: str,
customer_id: str,
prisma_client: PrismaClient,
):
sql_query = """
WITH SpendByModelApiKey AS (
SELECT
date_trunc('day', sl."startTime") AS group_by_day,
COALESCE(tt.team_alias, 'Unassigned Team') AS team_name,
sl.end_user AS customer,
sl.model,
sl.api_key,
SUM(sl.spend) AS model_api_spend,
SUM(sl.total_tokens) AS model_api_tokens
FROM
"LiteLLM_SpendLogs" sl
LEFT JOIN
"LiteLLM_TeamTable" tt
ON
sl.team_id = tt.team_id
WHERE
sl."startTime" BETWEEN $1::date AND $2::date
AND sl.team_id = $3
AND sl.end_user = $4
GROUP BY
date_trunc('day', sl."startTime"),
tt.team_alias,
sl.end_user,
sl.model,
sl.api_key
)
SELECT
group_by_day,
jsonb_agg(jsonb_build_object(
'team_name', team_name,
'customer', customer,
'total_spend', total_spend,
'metadata', metadata
)) AS teams_customers
FROM (
SELECT
group_by_day,
team_name,
customer,
SUM(model_api_spend) AS total_spend,
jsonb_agg(jsonb_build_object(
'model', model,
'api_key', api_key,
'spend', model_api_spend,
'total_tokens', model_api_tokens
)) AS metadata
FROM
SpendByModelApiKey
GROUP BY
group_by_day,
team_name,
customer
) AS aggregated
GROUP BY
group_by_day
ORDER BY
group_by_day;
"""
db_response = await prisma_client.db.query_raw(
sql_query, start_date, end_date, team_id, customer_id
)
if db_response is None:
return []
return db_response
def _get_messages_for_spend_logs_payload(
standard_logging_payload: Optional[StandardLoggingPayload],
metadata: Optional[dict] = None,
) -> str:
return "{}"
def _add_proxy_server_request_to_metadata(
metadata: dict,
litellm_params: dict,
) -> dict:
"""
Only store if _should_store_prompts_and_responses_in_spend_logs() is True
"""
if _should_store_prompts_and_responses_in_spend_logs():
_proxy_server_request = cast(
Optional[dict], litellm_params.get("proxy_server_request", {})
)
if _proxy_server_request is not None:
_request_body = _proxy_server_request.get("body", {}) or {}
_request_body_json_str = json.dumps(_request_body, default=str)
metadata["proxy_server_request"] = _request_body_json_str
return metadata
def _get_response_for_spend_logs_payload(
payload: Optional[StandardLoggingPayload],
) -> str:
if payload is None:
return "{}"
if _should_store_prompts_and_responses_in_spend_logs():
return json.dumps(payload.get("response", {}))
return "{}"
def _should_store_prompts_and_responses_in_spend_logs() -> bool:
from litellm.proxy.proxy_server import general_settings
return general_settings.get("store_prompts_in_spend_logs") is True