litellm-mirror/litellm/integrations/gcs_bucket/gcs_bucket_base.py
Ishaan Jaff 5f08a901b2 (feat) GCS Bucket logging. Allow using IAM auth for logging to GCS (#6628)
* fix gcs bucket auth

* allow iam auth for gcs logging

* test_get_gcs_logging_config_without_service_account
2024-11-06 17:14:56 -08:00

95 lines
3.2 KiB
Python

import json
import os
import uuid
from datetime import datetime
from typing import TYPE_CHECKING, Any, Dict, List, Optional, TypedDict, Union
import httpx
from pydantic import BaseModel, Field
import litellm
from litellm._logging import verbose_logger
from litellm.integrations.custom_logger import CustomLogger
from litellm.llms.custom_httpx.http_handler import (
get_async_httpx_client,
httpxSpecialProvider,
)
if TYPE_CHECKING:
from litellm.llms.vertex_ai_and_google_ai_studio.vertex_llm_base import VertexBase
else:
VertexBase = Any
class GCSBucketBase(CustomLogger):
def __init__(self, bucket_name: Optional[str] = None) -> None:
self.async_httpx_client = get_async_httpx_client(
llm_provider=httpxSpecialProvider.LoggingCallback
)
_path_service_account = os.getenv("GCS_PATH_SERVICE_ACCOUNT")
_bucket_name = bucket_name or os.getenv("GCS_BUCKET_NAME")
self.path_service_account_json: Optional[str] = _path_service_account
self.BUCKET_NAME: Optional[str] = _bucket_name
async def construct_request_headers(
self,
service_account_json: Optional[str],
vertex_instance: Optional[VertexBase] = None,
) -> Dict[str, str]:
from litellm import vertex_chat_completion
if vertex_instance is None:
vertex_instance = vertex_chat_completion
_auth_header, vertex_project = await vertex_instance._ensure_access_token_async(
credentials=service_account_json,
project_id=None,
custom_llm_provider="vertex_ai",
)
auth_header, _ = vertex_instance._get_token_and_url(
model="gcs-bucket",
auth_header=_auth_header,
vertex_credentials=service_account_json,
vertex_project=vertex_project,
vertex_location=None,
gemini_api_key=None,
stream=None,
custom_llm_provider="vertex_ai",
api_base=None,
)
verbose_logger.debug("constructed auth_header %s", auth_header)
headers = {
"Authorization": f"Bearer {auth_header}", # auth_header
"Content-Type": "application/json",
}
return headers
def sync_construct_request_headers(self) -> Dict[str, str]:
from litellm import vertex_chat_completion
_auth_header, vertex_project = vertex_chat_completion._ensure_access_token(
credentials=self.path_service_account_json,
project_id=None,
custom_llm_provider="vertex_ai",
)
auth_header, _ = vertex_chat_completion._get_token_and_url(
model="gcs-bucket",
auth_header=_auth_header,
vertex_credentials=self.path_service_account_json,
vertex_project=vertex_project,
vertex_location=None,
gemini_api_key=None,
stream=None,
custom_llm_provider="vertex_ai",
api_base=None,
)
verbose_logger.debug("constructed auth_header %s", auth_header)
headers = {
"Authorization": f"Bearer {auth_header}", # auth_header
"Content-Type": "application/json",
}
return headers