litellm-mirror/litellm/llms/OpenAI/gpt_transformation.py
Krish Dholakia 60709a0753
LiteLLM Minor Fixes and Improvements (09/13/2024) (#5689)
* refactor: cleanup unused variables + fix pyright errors

* feat(health_check.py): Closes https://github.com/BerriAI/litellm/issues/5686

* fix(o1_reasoning.py): add stricter check for o-1 reasoning model

* refactor(mistral/): make it easier to see mistral transformation logic

* fix(openai.py): fix openai o-1 model param mapping

Fixes https://github.com/BerriAI/litellm/issues/5685

* feat(main.py): infer finetuned gemini model from base model

Fixes https://github.com/BerriAI/litellm/issues/5678

* docs(vertex.md): update docs to call finetuned gemini models

* feat(proxy_server.py): allow admin to hide proxy model aliases

Closes https://github.com/BerriAI/litellm/issues/5692

* docs(load_balancing.md): add docs on hiding alias models from proxy config

* fix(base.py): don't raise notimplemented error

* fix(user_api_key_auth.py): fix model max budget check

* fix(router.py): fix elif

* fix(user_api_key_auth.py): don't set team_id to empty str

* fix(team_endpoints.py): fix response type

* test(test_completion.py): handle predibase error

* test(test_proxy_server.py): fix test

* fix(o1_transformation.py): fix max_completion_token mapping

* test(test_image_generation.py): mark flaky test
2024-09-14 10:02:55 -07:00

142 lines
5.2 KiB
Python

"""
Support for gpt model family
"""
import types
from typing import Optional, Union
import litellm
from litellm.types.llms.openai import AllMessageValues, ChatCompletionUserMessage
class OpenAIGPTConfig:
"""
Reference: https://platform.openai.com/docs/api-reference/chat/create
The class `OpenAIConfig` provides configuration for the OpenAI's Chat API interface. Below are the parameters:
- `frequency_penalty` (number or null): Defaults to 0. Allows a value between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, thereby minimizing repetition.
- `function_call` (string or object): This optional parameter controls how the model calls functions.
- `functions` (array): An optional parameter. It is a list of functions for which the model may generate JSON inputs.
- `logit_bias` (map): This optional parameter modifies the likelihood of specified tokens appearing in the completion.
- `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion.
- `n` (integer or null): This optional parameter helps to set how many chat completion choices to generate for each input message.
- `presence_penalty` (number or null): Defaults to 0. It penalizes new tokens based on if they appear in the text so far, hence increasing the model's likelihood to talk about new topics.
- `stop` (string / array / null): Specifies up to 4 sequences where the API will stop generating further tokens.
- `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2.
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling.
"""
frequency_penalty: Optional[int] = None
function_call: Optional[Union[str, dict]] = None
functions: Optional[list] = None
logit_bias: Optional[dict] = None
max_tokens: Optional[int] = None
n: Optional[int] = None
presence_penalty: Optional[int] = None
stop: Optional[Union[str, list]] = None
temperature: Optional[int] = None
top_p: Optional[int] = None
response_format: Optional[dict] = None
def __init__(
self,
frequency_penalty: Optional[int] = None,
function_call: Optional[Union[str, dict]] = None,
functions: Optional[list] = None,
logit_bias: Optional[dict] = None,
max_tokens: Optional[int] = None,
n: Optional[int] = None,
presence_penalty: Optional[int] = None,
stop: Optional[Union[str, list]] = None,
temperature: Optional[int] = None,
top_p: Optional[int] = None,
response_format: Optional[dict] = None,
) -> None:
locals_ = locals().copy()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def get_supported_openai_params(self, model: str) -> list:
base_params = [
"frequency_penalty",
"logit_bias",
"logprobs",
"top_logprobs",
"max_tokens",
"n",
"presence_penalty",
"seed",
"stop",
"stream",
"stream_options",
"temperature",
"top_p",
"tools",
"tool_choice",
"function_call",
"functions",
"max_retries",
"extra_headers",
"parallel_tool_calls",
] # works across all models
model_specific_params = []
if (
model != "gpt-3.5-turbo-16k" and model != "gpt-4"
): # gpt-4 does not support 'response_format'
model_specific_params.append("response_format")
if (
model in litellm.open_ai_chat_completion_models
) or model in litellm.open_ai_text_completion_models:
model_specific_params.append(
"user"
) # user is not a param supported by all openai-compatible endpoints - e.g. azure ai
return base_params + model_specific_params
def _map_openai_params(
self, non_default_params: dict, optional_params: dict, model: str
) -> dict:
supported_openai_params = self.get_supported_openai_params(model)
for param, value in non_default_params.items():
if param in supported_openai_params:
optional_params[param] = value
return optional_params
def map_openai_params(
self, non_default_params: dict, optional_params: dict, model: str
) -> dict:
return self._map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
)