litellm-mirror/litellm/proxy/utils.py

38 lines
No EOL
1.7 KiB
Python

import litellm
from litellm import ModelResponse
from proxy_server import llm_model_list
from typing import Optional
def track_cost_callback(
kwargs, # kwargs to completion
completion_response: ModelResponse, # response from completion
start_time = None,
end_time = None, # start/end time for completion
):
try:
# init logging config
print("in custom callback tracking cost", llm_model_list)
if "azure" in kwargs["model"]:
# for azure cost tracking, we check the provided model list in the config.yaml
# we need to map azure/chatgpt-deployment to -> azure/gpt-3.5-turbo
pass
# check if it has collected an entire stream response
if "complete_streaming_response" in kwargs:
# for tracking streaming cost we pass the "messages" and the output_text to litellm.completion_cost
completion_response=kwargs["complete_streaming_response"]
input_text = kwargs["messages"]
output_text = completion_response["choices"][0]["message"]["content"]
response_cost = litellm.completion_cost(
model = kwargs["model"],
messages = input_text,
completion=output_text
)
print("streaming response_cost", response_cost)
# for non streaming responses
else:
# we pass the completion_response obj
if kwargs["stream"] != True:
response_cost = litellm.completion_cost(completion_response=completion_response)
print("regular response_cost", response_cost)
except:
pass