litellm-mirror/litellm/llms/bedrock_httpx.py
2024-05-11 19:55:38 -07:00

733 lines
26 KiB
Python

# What is this?
## Initial implementation of calling bedrock via httpx client (allows for async calls).
## V0 - just covers cohere command-r support
import os, types
import json
from enum import Enum
import requests, copy # type: ignore
import time
from typing import (
Callable,
Optional,
List,
Literal,
Union,
Any,
TypedDict,
Tuple,
Iterator,
AsyncIterator,
)
from litellm.utils import (
ModelResponse,
Usage,
map_finish_reason,
CustomStreamWrapper,
Message,
Choices,
get_secret,
Logging,
)
import litellm
from .prompt_templates.factory import prompt_factory, custom_prompt, cohere_message_pt
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
from .base import BaseLLM
import httpx # type: ignore
from .bedrock import BedrockError, convert_messages_to_prompt
from litellm.types.llms.bedrock import *
class AmazonCohereChatConfig:
"""
Reference - https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-cohere-command-r-plus.html
"""
documents: Optional[List[Document]] = None
search_queries_only: Optional[bool] = None
preamble: Optional[str] = None
max_tokens: Optional[int] = None
temperature: Optional[float] = None
p: Optional[float] = None
k: Optional[float] = None
prompt_truncation: Optional[str] = None
frequency_penalty: Optional[float] = None
presence_penalty: Optional[float] = None
seed: Optional[int] = None
return_prompt: Optional[bool] = None
stop_sequences: Optional[List[str]] = None
raw_prompting: Optional[bool] = None
def __init__(
self,
documents: Optional[List[Document]] = None,
search_queries_only: Optional[bool] = None,
preamble: Optional[str] = None,
max_tokens: Optional[int] = None,
temperature: Optional[float] = None,
p: Optional[float] = None,
k: Optional[float] = None,
prompt_truncation: Optional[str] = None,
frequency_penalty: Optional[float] = None,
presence_penalty: Optional[float] = None,
seed: Optional[int] = None,
return_prompt: Optional[bool] = None,
stop_sequences: Optional[str] = None,
raw_prompting: Optional[bool] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def get_supported_openai_params(self) -> List[str]:
return [
"max_tokens",
"stream",
"stop",
"temperature",
"top_p",
"frequency_penalty",
"presence_penalty",
"seed",
"stop",
]
def map_openai_params(
self, non_default_params: dict, optional_params: dict
) -> dict:
for param, value in non_default_params.items():
if param == "max_tokens":
optional_params["max_tokens"] = value
if param == "stream":
optional_params["stream"] = value
if param == "stop":
if isinstance(value, str):
value = [value]
optional_params["stop_sequences"] = value
if param == "temperature":
optional_params["temperature"] = value
if param == "top_p":
optional_params["p"] = value
if param == "frequency_penalty":
optional_params["frequency_penalty"] = value
if param == "presence_penalty":
optional_params["presence_penalty"] = value
if "seed":
optional_params["seed"] = value
return optional_params
class BedrockLLM(BaseLLM):
"""
Example call
```
curl --location --request POST 'https://bedrock-runtime.{aws_region_name}.amazonaws.com/model/{bedrock_model_name}/invoke' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--user "$AWS_ACCESS_KEY_ID":"$AWS_SECRET_ACCESS_KEY" \
--aws-sigv4 "aws:amz:us-east-1:bedrock" \
--data-raw '{
"prompt": "Hi",
"temperature": 0,
"p": 0.9,
"max_tokens": 4096
}'
```
"""
def __init__(self) -> None:
super().__init__()
def convert_messages_to_prompt(
self, model, messages, provider, custom_prompt_dict
) -> Tuple[str, Optional[list]]:
# handle anthropic prompts and amazon titan prompts
prompt = ""
chat_history: Optional[list] = None
if provider == "anthropic" or provider == "amazon":
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details["roles"],
initial_prompt_value=model_prompt_details["initial_prompt_value"],
final_prompt_value=model_prompt_details["final_prompt_value"],
messages=messages,
)
else:
prompt = prompt_factory(
model=model, messages=messages, custom_llm_provider="bedrock"
)
elif provider == "mistral":
prompt = prompt_factory(
model=model, messages=messages, custom_llm_provider="bedrock"
)
elif provider == "meta":
prompt = prompt_factory(
model=model, messages=messages, custom_llm_provider="bedrock"
)
elif provider == "cohere":
prompt, chat_history = cohere_message_pt(messages=messages)
else:
prompt = ""
for message in messages:
if "role" in message:
if message["role"] == "user":
prompt += f"{message['content']}"
else:
prompt += f"{message['content']}"
else:
prompt += f"{message['content']}"
return prompt, chat_history # type: ignore
def get_credentials(
self,
aws_access_key_id: Optional[str] = None,
aws_secret_access_key: Optional[str] = None,
aws_region_name: Optional[str] = None,
aws_session_name: Optional[str] = None,
aws_profile_name: Optional[str] = None,
aws_role_name: Optional[str] = None,
):
"""
Return a boto3.Credentials object
"""
import boto3
## CHECK IS 'os.environ/' passed in
params_to_check: List[Optional[str]] = [
aws_access_key_id,
aws_secret_access_key,
aws_region_name,
aws_session_name,
aws_profile_name,
aws_role_name,
]
# Iterate over parameters and update if needed
for i, param in enumerate(params_to_check):
if param and param.startswith("os.environ/"):
_v = get_secret(param)
if _v is not None and isinstance(_v, str):
params_to_check[i] = _v
# Assign updated values back to parameters
(
aws_access_key_id,
aws_secret_access_key,
aws_region_name,
aws_session_name,
aws_profile_name,
aws_role_name,
) = params_to_check
### CHECK STS ###
if aws_role_name is not None and aws_session_name is not None:
sts_client = boto3.client(
"sts",
aws_access_key_id=aws_access_key_id, # [OPTIONAL]
aws_secret_access_key=aws_secret_access_key, # [OPTIONAL]
)
sts_response = sts_client.assume_role(
RoleArn=aws_role_name, RoleSessionName=aws_session_name
)
return sts_response["Credentials"]
elif aws_profile_name is not None: ### CHECK SESSION ###
# uses auth values from AWS profile usually stored in ~/.aws/credentials
client = boto3.Session(profile_name=aws_profile_name)
return client.get_credentials()
else:
session = boto3.Session(
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
region_name=aws_region_name,
)
return session.get_credentials()
def process_response(
self,
model: str,
response: Union[requests.Response, httpx.Response],
model_response: ModelResponse,
stream: bool,
logging_obj: Logging,
optional_params: dict,
api_key: str,
data: Union[dict, str],
messages: List,
print_verbose,
encoding,
) -> ModelResponse:
## LOGGING
logging_obj.post_call(
input=messages,
api_key=api_key,
original_response=response.text,
additional_args={"complete_input_dict": data},
)
print_verbose(f"raw model_response: {response.text}")
## RESPONSE OBJECT
try:
completion_response = response.json()
except:
raise BedrockError(message=response.text, status_code=422)
try:
model_response.choices[0].message.content = completion_response["text"] # type: ignore
except Exception as e:
raise BedrockError(message=response.text, status_code=422)
## CALCULATING USAGE - bedrock returns usage in the headers
prompt_tokens = int(
response.headers.get(
"x-amzn-bedrock-input-token-count",
len(encoding.encode("".join(m.get("content", "") for m in messages))),
)
)
completion_tokens = int(
response.headers.get(
"x-amzn-bedrock-output-token-count",
len(
encoding.encode(
model_response.choices[0].message.content, # type: ignore
disallowed_special=(),
)
),
)
)
model_response["created"] = int(time.time())
model_response["model"] = model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
setattr(model_response, "usage", usage)
return model_response
def completion(
self,
model: str,
messages: list,
custom_prompt_dict: dict,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
logging_obj,
optional_params: dict,
acompletion: bool,
timeout: Optional[Union[float, httpx.Timeout]],
litellm_params=None,
logger_fn=None,
extra_headers: Optional[dict] = None,
client: Optional[Union[AsyncHTTPHandler, HTTPHandler]] = None,
) -> Union[ModelResponse, CustomStreamWrapper]:
try:
import boto3
from botocore.auth import SigV4Auth
from botocore.awsrequest import AWSRequest
from botocore.credentials import Credentials
except ImportError as e:
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
## SETUP ##
stream = optional_params.pop("stream", None)
## CREDENTIALS ##
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
aws_region_name = optional_params.pop("aws_region_name", None)
aws_role_name = optional_params.pop("aws_role_name", None)
aws_session_name = optional_params.pop("aws_session_name", None)
aws_profile_name = optional_params.pop("aws_profile_name", None)
aws_bedrock_runtime_endpoint = optional_params.pop(
"aws_bedrock_runtime_endpoint", None
) # https://bedrock-runtime.{region_name}.amazonaws.com
### SET REGION NAME ###
if aws_region_name is None:
# check env #
litellm_aws_region_name = get_secret("AWS_REGION_NAME", None)
if litellm_aws_region_name is not None and isinstance(
litellm_aws_region_name, str
):
aws_region_name = litellm_aws_region_name
standard_aws_region_name = get_secret("AWS_REGION", None)
if standard_aws_region_name is not None and isinstance(
standard_aws_region_name, str
):
aws_region_name = standard_aws_region_name
if aws_region_name is None:
aws_region_name = "us-west-2"
credentials: Credentials = self.get_credentials(
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_region_name=aws_region_name,
aws_session_name=aws_session_name,
aws_profile_name=aws_profile_name,
aws_role_name=aws_role_name,
)
### SET RUNTIME ENDPOINT ###
endpoint_url = ""
env_aws_bedrock_runtime_endpoint = get_secret("AWS_BEDROCK_RUNTIME_ENDPOINT")
if aws_bedrock_runtime_endpoint is not None and isinstance(
aws_bedrock_runtime_endpoint, str
):
endpoint_url = aws_bedrock_runtime_endpoint
elif env_aws_bedrock_runtime_endpoint and isinstance(
env_aws_bedrock_runtime_endpoint, str
):
endpoint_url = env_aws_bedrock_runtime_endpoint
else:
endpoint_url = f"https://bedrock-runtime.{aws_region_name}.amazonaws.com"
if stream is not None and stream == True:
endpoint_url = f"{endpoint_url}/model/{model}/invoke-with-response-stream"
else:
endpoint_url = f"{endpoint_url}/model/{model}/invoke"
sigv4 = SigV4Auth(credentials, "bedrock", aws_region_name)
provider = model.split(".")[0]
prompt, chat_history = self.convert_messages_to_prompt(
model, messages, provider, custom_prompt_dict
)
inference_params = copy.deepcopy(optional_params)
if provider == "cohere":
if model.startswith("cohere.command-r"):
## LOAD CONFIG
config = litellm.AmazonCohereChatConfig().get_config()
for k, v in config.items():
if (
k not in inference_params
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
_data = {"message": prompt, **inference_params}
if chat_history is not None:
_data["chat_history"] = chat_history
data = json.dumps(_data)
else:
## LOAD CONFIG
config = litellm.AmazonCohereConfig.get_config()
for k, v in config.items():
if (
k not in inference_params
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
if stream == True:
inference_params["stream"] = (
True # cohere requires stream = True in inference params
)
data = json.dumps({"prompt": prompt, **inference_params})
else:
raise Exception("UNSUPPORTED PROVIDER")
## COMPLETION CALL
headers = {"Content-Type": "application/json"}
if extra_headers is not None:
headers = {"Content-Type": "application/json", **extra_headers}
request = AWSRequest(
method="POST", url=endpoint_url, data=data, headers=headers
)
sigv4.add_auth(request)
prepped = request.prepare()
## LOGGING
logging_obj.pre_call(
input=messages,
api_key="",
additional_args={
"complete_input_dict": data,
"api_base": prepped.url,
"headers": prepped.headers,
},
)
### ROUTING (ASYNC, STREAMING, SYNC)
if acompletion:
if isinstance(client, HTTPHandler):
client = None
if stream:
return self.async_streaming(
model=model,
messages=messages,
data=data,
api_base=prepped.url,
model_response=model_response,
print_verbose=print_verbose,
encoding=encoding,
logging_obj=logging_obj,
optional_params=optional_params,
stream=True,
litellm_params=litellm_params,
logger_fn=logger_fn,
headers=prepped.headers,
timeout=timeout,
client=client,
) # type: ignore
### ASYNC COMPLETION
return self.async_completion(
model=model,
messages=messages,
data=data,
api_base=prepped.url,
model_response=model_response,
print_verbose=print_verbose,
encoding=encoding,
logging_obj=logging_obj,
optional_params=optional_params,
stream=False,
litellm_params=litellm_params,
logger_fn=logger_fn,
headers=prepped.headers,
timeout=timeout,
client=client,
) # type: ignore
if client is None or isinstance(client, AsyncHTTPHandler):
_params = {}
if timeout is not None:
if isinstance(timeout, float) or isinstance(timeout, int):
timeout = httpx.Timeout(timeout)
_params["timeout"] = timeout
self.client = HTTPHandler(**_params) # type: ignore
else:
self.client = client
if stream is not None and stream == True:
response = self.client.post(
url=prepped.url,
headers=prepped.headers, # type: ignore
data=data,
stream=stream,
)
if response.status_code != 200:
raise BedrockError(
status_code=response.status_code, message=response.text
)
decoder = AWSEventStreamDecoder()
completion_stream = decoder.iter_bytes(response.iter_bytes(chunk_size=1024))
streaming_response = CustomStreamWrapper(
completion_stream=completion_stream,
model=model,
custom_llm_provider="bedrock",
logging_obj=logging_obj,
)
return streaming_response
response = self.client.post(url=prepped.url, headers=prepped.headers, data=data) # type: ignore
try:
response.raise_for_status()
except httpx.HTTPStatusError as err:
error_code = err.response.status_code
raise BedrockError(status_code=error_code, message=response.text)
return self.process_response(
model=model,
response=response,
model_response=model_response,
stream=stream,
logging_obj=logging_obj,
optional_params=optional_params,
api_key="",
data=data,
messages=messages,
print_verbose=print_verbose,
encoding=encoding,
)
async def async_completion(
self,
model: str,
messages: list,
api_base: str,
model_response: ModelResponse,
print_verbose: Callable,
data: str,
timeout: Optional[Union[float, httpx.Timeout]],
encoding,
logging_obj,
stream,
optional_params: dict,
litellm_params=None,
logger_fn=None,
headers={},
client: Optional[AsyncHTTPHandler] = None,
) -> ModelResponse:
if client is None:
_params = {}
if timeout is not None:
if isinstance(timeout, float) or isinstance(timeout, int):
timeout = httpx.Timeout(timeout)
_params["timeout"] = timeout
self.client = AsyncHTTPHandler(**_params) # type: ignore
else:
self.client = client # type: ignore
response = await self.client.post(api_base, headers=headers, data=data) # type: ignore
return self.process_response(
model=model,
response=response,
model_response=model_response,
stream=stream,
logging_obj=logging_obj,
api_key="",
data=data,
messages=messages,
print_verbose=print_verbose,
optional_params=optional_params,
encoding=encoding,
)
async def async_streaming(
self,
model: str,
messages: list,
api_base: str,
model_response: ModelResponse,
print_verbose: Callable,
data: str,
timeout: Optional[Union[float, httpx.Timeout]],
encoding,
logging_obj,
stream,
optional_params: dict,
litellm_params=None,
logger_fn=None,
headers={},
client: Optional[AsyncHTTPHandler] = None,
) -> CustomStreamWrapper:
if client is None:
_params = {}
if timeout is not None:
if isinstance(timeout, float) or isinstance(timeout, int):
timeout = httpx.Timeout(timeout)
_params["timeout"] = timeout
self.client = AsyncHTTPHandler(**_params) # type: ignore
else:
self.client = client # type: ignore
response = await self.client.post(api_base, headers=headers, data=data, stream=True) # type: ignore
if response.status_code != 200:
raise BedrockError(status_code=response.status_code, message=response.text)
decoder = AWSEventStreamDecoder()
completion_stream = decoder.aiter_bytes(response.aiter_bytes(chunk_size=1024))
streaming_response = CustomStreamWrapper(
completion_stream=completion_stream,
model=model,
custom_llm_provider="bedrock",
logging_obj=logging_obj,
)
return streaming_response
def embedding(self, *args, **kwargs):
return super().embedding(*args, **kwargs)
def get_response_stream_shape():
from botocore.model import ServiceModel
from botocore.loaders import Loader
loader = Loader()
bedrock_service_dict = loader.load_service_model("bedrock-runtime", "service-2")
bedrock_service_model = ServiceModel(bedrock_service_dict)
return bedrock_service_model.shape_for("ResponseStream")
class AWSEventStreamDecoder:
def __init__(self) -> None:
from botocore.parsers import EventStreamJSONParser
self.parser = EventStreamJSONParser()
def iter_bytes(self, iterator: Iterator[bytes]) -> Iterator[GenericStreamingChunk]:
"""Given an iterator that yields lines, iterate over it & yield every event encountered"""
from botocore.eventstream import EventStreamBuffer
event_stream_buffer = EventStreamBuffer()
for chunk in iterator:
event_stream_buffer.add_data(chunk)
for event in event_stream_buffer:
message = self._parse_message_from_event(event)
if message:
# sse_event = ServerSentEvent(data=message, event="completion")
_data = json.loads(message)
streaming_chunk: GenericStreamingChunk = GenericStreamingChunk(
text=_data.get("text", ""),
is_finished=_data.get("is_finished", False),
finish_reason=_data.get("finish_reason", ""),
)
yield streaming_chunk
async def aiter_bytes(
self, iterator: AsyncIterator[bytes]
) -> AsyncIterator[GenericStreamingChunk]:
"""Given an async iterator that yields lines, iterate over it & yield every event encountered"""
from botocore.eventstream import EventStreamBuffer
event_stream_buffer = EventStreamBuffer()
async for chunk in iterator:
event_stream_buffer.add_data(chunk)
for event in event_stream_buffer:
message = self._parse_message_from_event(event)
if message:
_data = json.loads(message)
streaming_chunk: GenericStreamingChunk = GenericStreamingChunk(
text=_data.get("text", ""),
is_finished=_data.get("is_finished", False),
finish_reason=_data.get("finish_reason", ""),
)
yield streaming_chunk
def _parse_message_from_event(self, event) -> Optional[str]:
response_dict = event.to_response_dict()
parsed_response = self.parser.parse(response_dict, get_response_stream_shape())
if response_dict["status_code"] != 200:
raise ValueError(f"Bad response code, expected 200: {response_dict}")
chunk = parsed_response.get("chunk")
if not chunk:
return None
return chunk.get("bytes").decode() # type: ignore[no-any-return]