litellm-mirror/litellm/router_utils/fallback_event_handlers.py
zishaansunderji 64ec1bb016 tidy up
2025-04-07 18:42:09 -04:00

349 lines
14 KiB
Python

from enum import Enum
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import litellm
from litellm._logging import verbose_router_logger
from litellm.integrations.custom_logger import CustomLogger
from litellm.router_utils.add_retry_fallback_headers import (
add_fallback_headers_to_response,
)
from litellm.types.router import LiteLLMParamsTypedDict
if TYPE_CHECKING:
from litellm.router import Router as _Router
LitellmRouter = _Router
else:
LitellmRouter = Any
def _check_stripped_model_group(model_group: str, fallback_key: str) -> bool:
"""
Handles wildcard routing scenario
where fallbacks set like:
[{"gpt-3.5-turbo": ["claude-3-haiku"]}]
but model_group is like:
"openai/gpt-3.5-turbo"
Returns:
- True if the stripped model group == fallback_key
"""
for provider in litellm.provider_list:
if isinstance(provider, Enum):
_provider = provider.value
else:
_provider = provider
if model_group.startswith(f"{_provider}/"):
stripped_model_group = model_group.replace(f"{_provider}/", "")
if stripped_model_group == fallback_key:
return True
return False
def get_fallback_model_group(
fallbacks: List[Any], model_group: str
) -> Tuple[Optional[List[str]], Optional[int]]:
"""
Returns:
- fallback_model_group: List[str] of fallback model groups. example: ["gpt-4", "gpt-3.5-turbo"]
- generic_fallback_idx: int of the index of the generic fallback in the fallbacks list.
Checks:
- exact match
- stripped model group match
- generic fallback
"""
generic_fallback_idx: Optional[int] = None
stripped_model_fallback: Optional[List[str]] = None
fallback_model_group: Optional[List[str]] = None
## check for specific model group-specific fallbacks
for idx, item in enumerate(fallbacks):
if isinstance(item, dict):
if list(item.keys())[0] == model_group: # check exact match
fallback_model_group = item[model_group]
break
elif _check_stripped_model_group(
model_group=model_group, fallback_key=list(item.keys())[0]
): # check generic fallback
stripped_model_fallback = item[list(item.keys())[0]]
elif list(item.keys())[0] == "*": # check generic fallback
generic_fallback_idx = idx
elif isinstance(item, str):
fallback_model_group = [fallbacks.pop(idx)] # returns single-item list
## if none, check for generic fallback
if fallback_model_group is None:
if stripped_model_fallback is not None:
fallback_model_group = stripped_model_fallback
elif generic_fallback_idx is not None:
fallback_model_group = fallbacks[generic_fallback_idx]["*"]
return fallback_model_group, generic_fallback_idx
async def run_async_fallback(
*args: Tuple[Any],
litellm_router: LitellmRouter,
fallback_model_group: List[str],
original_model_group: str,
original_exception: Exception,
max_fallbacks: int,
fallback_depth: int,
**kwargs,
) -> Any:
"""
Loops through all the fallback model groups and calls kwargs["original_function"] with the arguments and keyword arguments provided.
If the call is successful, it logs the success and returns the response.
If the call fails, it logs the failure and continues to the next fallback model group.
If all fallback model groups fail, it raises the most recent exception.
Args:
litellm_router: The litellm router instance.
*args: Positional arguments.
fallback_model_group: List[str] of fallback model groups. example: ["gpt-4", "gpt-3.5-turbo"]
original_model_group: The original model group. example: "gpt-3.5-turbo"
original_exception: The original exception.
**kwargs: Keyword arguments.
Returns:
The response from the successful fallback model group.
Raises:
The most recent exception if all fallback model groups fail.
"""
### BASE CASE ### MAX FALLBACK DEPTH REACHED
if fallback_depth >= max_fallbacks:
raise original_exception
error_from_fallbacks = original_exception
# Handle mid-stream fallbacks by preserving already generated content
is_mid_stream = kwargs.pop("is_mid_stream_fallback", False)
previous_content = kwargs.pop("previous_content", "")
# If this is a mid-stream fallback and we have previous content, prepare messages
if is_mid_stream and previous_content and "messages" in kwargs:
messages = kwargs.get("messages", [])
if isinstance(messages, list) and len(messages) > 0:
if previous_content.strip():
# Check for a system message
system_msg_idx = None
for i, msg in enumerate(messages):
if msg.get("role") == "system":
system_msg_idx = i
break
continuation_text = f"The following is the beginning of an assistant's response. Continue from where it left off: '{previous_content}'"
if system_msg_idx is not None:
# Append to existing system message
messages[system_msg_idx]["content"] = messages[system_msg_idx].get("content", "") + "\n\n" + continuation_text
else:
# Add a new system message
messages.insert(0, {"role": "assistant", "content": continuation_text})
# Update kwargs with modified messages
kwargs["messages"] = messages
# Add to metadata to track this was a mid-stream fallback
kwargs.setdefault("metadata", {}).update({
"is_mid_stream_fallback": True,
"fallback_depth": fallback_depth,
"previous_content_length": len(previous_content)
})
for mg in fallback_model_group:
if mg == original_model_group:
continue
try:
# LOGGING
kwargs = litellm_router.log_retry(kwargs=kwargs, e=original_exception)
verbose_router_logger.info(f"Falling back to model_group = {mg}")
if isinstance(mg, str):
kwargs["model"] = mg
elif isinstance(mg, dict):
kwargs.update(mg)
kwargs.setdefault("metadata", {}).update(
{"model_group": kwargs.get("model", None)}
) # update model_group used, if fallbacks are done
fallback_depth = fallback_depth + 1
kwargs["fallback_depth"] = fallback_depth
kwargs["max_fallbacks"] = max_fallbacks
response = await litellm_router.async_function_with_fallbacks(
*args, **kwargs
)
if hasattr(response, "_hidden_params"):
response._hidden_params.setdefault("metadata", {})["mid_stream_fallback"] = True
# Also add to additional_headers for header propagation
response._hidden_params.setdefault("additional_headers", {})["x-litellm-mid-stream-fallback"] = True
verbose_router_logger.info("Successful fallback b/w models.")
response = add_fallback_headers_to_response(
response=response,
attempted_fallbacks=fallback_depth,
)
# If this was a mid-stream fallback, also add that to response headers
if is_mid_stream and hasattr(response, "_hidden_params"):
response._hidden_params.setdefault("additional_headers", {})
response._hidden_params["additional_headers"]["x-litellm-mid-stream-fallback"] = True
response._hidden_params["additional_headers"]["x-litellm-previous-content-length"] = len(previous_content)
# callback for successfull_fallback_event():
await log_success_fallback_event(
original_model_group=original_model_group,
kwargs=kwargs,
original_exception=original_exception,
)
return response
except Exception as e:
error_from_fallbacks = e
await log_failure_fallback_event(
original_model_group=original_model_group,
kwargs=kwargs,
original_exception=original_exception,
)
raise error_from_fallbacks
async def log_success_fallback_event(
original_model_group: str, kwargs: dict, original_exception: Exception
):
"""
Log a successful fallback event to all registered callbacks.
This function iterates through all callbacks, initializing _known_custom_logger_compatible_callbacks if needed,
and calls the log_success_fallback_event method on CustomLogger instances.
Args:
original_model_group (str): The original model group before fallback.
kwargs (dict): kwargs for the request
Note:
Errors during logging are caught and reported but do not interrupt the process.
"""
from litellm.litellm_core_utils.litellm_logging import (
_init_custom_logger_compatible_class,
)
for _callback in litellm.callbacks:
if isinstance(_callback, CustomLogger) or (
_callback in litellm._known_custom_logger_compatible_callbacks
):
try:
_callback_custom_logger: Optional[CustomLogger] = None
if _callback in litellm._known_custom_logger_compatible_callbacks:
_callback_custom_logger = _init_custom_logger_compatible_class(
logging_integration=_callback, # type: ignore
llm_router=None,
internal_usage_cache=None,
)
elif isinstance(_callback, CustomLogger):
_callback_custom_logger = _callback
else:
verbose_router_logger.exception(
f"{_callback} logger not found / initialized properly"
)
continue
if _callback_custom_logger is None:
verbose_router_logger.exception(
f"{_callback} logger not found / initialized properly, callback is None"
)
continue
await _callback_custom_logger.log_success_fallback_event(
original_model_group=original_model_group,
kwargs=kwargs,
original_exception=original_exception,
)
except Exception as e:
verbose_router_logger.error(
f"Error in log_success_fallback_event: {str(e)}"
)
async def log_failure_fallback_event(
original_model_group: str, kwargs: dict, original_exception: Exception
):
"""
Log a failed fallback event to all registered callbacks.
This function iterates through all callbacks, initializing _known_custom_logger_compatible_callbacks if needed,
and calls the log_failure_fallback_event method on CustomLogger instances.
Args:
original_model_group (str): The original model group before fallback.
kwargs (dict): kwargs for the request
Note:
Errors during logging are caught and reported but do not interrupt the process.
"""
from litellm.litellm_core_utils.litellm_logging import (
_init_custom_logger_compatible_class,
)
for _callback in litellm.callbacks:
if isinstance(_callback, CustomLogger) or (
_callback in litellm._known_custom_logger_compatible_callbacks
):
try:
_callback_custom_logger: Optional[CustomLogger] = None
if _callback in litellm._known_custom_logger_compatible_callbacks:
_callback_custom_logger = _init_custom_logger_compatible_class(
logging_integration=_callback, # type: ignore
llm_router=None,
internal_usage_cache=None,
)
elif isinstance(_callback, CustomLogger):
_callback_custom_logger = _callback
else:
verbose_router_logger.exception(
f"{_callback} logger not found / initialized properly"
)
continue
if _callback_custom_logger is None:
verbose_router_logger.exception(
f"{_callback} logger not found / initialized properly"
)
continue
await _callback_custom_logger.log_failure_fallback_event(
original_model_group=original_model_group,
kwargs=kwargs,
original_exception=original_exception,
)
except Exception as e:
verbose_router_logger.error(
f"Error in log_failure_fallback_event: {str(e)}"
)
def _check_non_standard_fallback_format(fallbacks: Optional[List[Any]]) -> bool:
"""
Checks if the fallbacks list is a list of strings or a list of dictionaries.
If
- List[str]: e.g. ["claude-3-haiku", "openai/o-1"]
- List[Dict[<LiteLLMParamsTypedDict>, Any]]: e.g. [{"model": "claude-3-haiku", "messages": [{"role": "user", "content": "Hey, how's it going?"}]}]
If [{"gpt-3.5-turbo": ["claude-3-haiku"]}] then standard format.
"""
if fallbacks is None or not isinstance(fallbacks, list) or len(fallbacks) == 0:
return False
if all(isinstance(item, str) for item in fallbacks):
return True
elif all(isinstance(item, dict) for item in fallbacks):
for key in LiteLLMParamsTypedDict.__annotations__.keys():
if key in fallbacks[0].keys():
return True
return False
def run_non_standard_fallback_format(
fallbacks: Union[List[str], List[Dict[str, Any]]], model_group: str
):
pass