litellm-mirror/litellm/llms/cohere.py

306 lines
10 KiB
Python

import os, types
import json
from enum import Enum
import requests # type: ignore
import time, traceback
from typing import Callable, Optional
from litellm.utils import ModelResponse, Choices, Message, Usage
import litellm
import httpx # type: ignore
class CohereError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
self.request = httpx.Request(
method="POST", url="https://api.cohere.ai/v1/generate"
)
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
def construct_cohere_tool(tools=None):
if tools is None:
tools = []
return {"tools": tools}
class CohereConfig:
"""
Reference: https://docs.cohere.com/reference/generate
The class `CohereConfig` provides configuration for the Cohere's API interface. Below are the parameters:
- `num_generations` (integer): Maximum number of generations returned. Default is 1, with a minimum value of 1 and a maximum value of 5.
- `max_tokens` (integer): Maximum number of tokens the model will generate as part of the response. Default value is 20.
- `truncate` (string): Specifies how the API handles inputs longer than maximum token length. Options include NONE, START, END. Default is END.
- `temperature` (number): A non-negative float controlling the randomness in generation. Lower temperatures result in less random generations. Default is 0.75.
- `preset` (string): Identifier of a custom preset, a combination of parameters such as prompt, temperature etc.
- `end_sequences` (array of strings): The generated text gets cut at the beginning of the earliest occurrence of an end sequence, which will be excluded from the text.
- `stop_sequences` (array of strings): The generated text gets cut at the end of the earliest occurrence of a stop sequence, which will be included in the text.
- `k` (integer): Limits generation at each step to top `k` most likely tokens. Default is 0.
- `p` (number): Limits generation at each step to most likely tokens with total probability mass of `p`. Default is 0.
- `frequency_penalty` (number): Reduces repetitiveness of generated tokens. Higher values apply stronger penalties to previously occurred tokens.
- `presence_penalty` (number): Reduces repetitiveness of generated tokens. Similar to frequency_penalty, but this penalty applies equally to all tokens that have already appeared.
- `return_likelihoods` (string): Specifies how and if token likelihoods are returned with the response. Options include GENERATION, ALL and NONE.
- `logit_bias` (object): Used to prevent the model from generating unwanted tokens or to incentivize it to include desired tokens. e.g. {"hello_world": 1233}
"""
num_generations: Optional[int] = None
max_tokens: Optional[int] = None
truncate: Optional[str] = None
temperature: Optional[int] = None
preset: Optional[str] = None
end_sequences: Optional[list] = None
stop_sequences: Optional[list] = None
k: Optional[int] = None
p: Optional[int] = None
frequency_penalty: Optional[int] = None
presence_penalty: Optional[int] = None
return_likelihoods: Optional[str] = None
logit_bias: Optional[dict] = None
def __init__(
self,
num_generations: Optional[int] = None,
max_tokens: Optional[int] = None,
truncate: Optional[str] = None,
temperature: Optional[int] = None,
preset: Optional[str] = None,
end_sequences: Optional[list] = None,
stop_sequences: Optional[list] = None,
k: Optional[int] = None,
p: Optional[int] = None,
frequency_penalty: Optional[int] = None,
presence_penalty: Optional[int] = None,
return_likelihoods: Optional[str] = None,
logit_bias: Optional[dict] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def validate_environment(api_key):
headers = {
"accept": "application/json",
"content-type": "application/json",
}
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
return headers
def completion(
model: str,
messages: list,
api_base: str,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
api_key,
logging_obj,
optional_params=None,
litellm_params=None,
logger_fn=None,
):
headers = validate_environment(api_key)
completion_url = api_base
model = model
prompt = " ".join(message["content"] for message in messages)
## Load Config
config = litellm.CohereConfig.get_config()
for k, v in config.items():
if (
k not in optional_params
): # completion(top_k=3) > cohere_config(top_k=3) <- allows for dynamic variables to be passed in
optional_params[k] = v
## Handle Tool Calling
if "tools" in optional_params:
_is_function_call = True
tool_calling_system_prompt = construct_cohere_tool(
tools=optional_params["tools"]
)
optional_params["tools"] = tool_calling_system_prompt
data = {
"model": model,
"prompt": prompt,
**optional_params,
}
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=api_key,
additional_args={
"complete_input_dict": data,
"headers": headers,
"api_base": completion_url,
},
)
## COMPLETION CALL
response = requests.post(
completion_url,
headers=headers,
data=json.dumps(data),
stream=optional_params["stream"] if "stream" in optional_params else False,
)
## error handling for cohere calls
if response.status_code != 200:
raise CohereError(message=response.text, status_code=response.status_code)
if "stream" in optional_params and optional_params["stream"] == True:
return response.iter_lines()
else:
## LOGGING
logging_obj.post_call(
input=prompt,
api_key=api_key,
original_response=response.text,
additional_args={"complete_input_dict": data},
)
print_verbose(f"raw model_response: {response.text}")
## RESPONSE OBJECT
completion_response = response.json()
if "error" in completion_response:
raise CohereError(
message=completion_response["error"],
status_code=response.status_code,
)
else:
try:
choices_list = []
for idx, item in enumerate(completion_response["generations"]):
if len(item["text"]) > 0:
message_obj = Message(content=item["text"])
else:
message_obj = Message(content=None)
choice_obj = Choices(
finish_reason=item["finish_reason"],
index=idx + 1,
message=message_obj,
)
choices_list.append(choice_obj)
model_response["choices"] = choices_list
except Exception as e:
raise CohereError(
message=response.text, status_code=response.status_code
)
## CALCULATING USAGE
prompt_tokens = len(encoding.encode(prompt))
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
)
model_response["created"] = int(time.time())
model_response["model"] = model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
setattr(model_response, "usage", usage)
return model_response
def embedding(
model: str,
input: list,
api_key: Optional[str] = None,
logging_obj=None,
model_response=None,
encoding=None,
optional_params=None,
):
headers = validate_environment(api_key)
embed_url = "https://api.cohere.ai/v1/embed"
model = model
data = {"model": model, "texts": input, **optional_params}
if "3" in model and "input_type" not in data:
# cohere v3 embedding models require input_type, if no input_type is provided, default to "search_document"
data["input_type"] = "search_document"
## LOGGING
logging_obj.pre_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
)
## COMPLETION CALL
response = requests.post(embed_url, headers=headers, data=json.dumps(data))
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=response,
)
"""
response
{
'object': "list",
'data': [
]
'model',
'usage'
}
"""
if response.status_code != 200:
raise CohereError(message=response.text, status_code=response.status_code)
embeddings = response.json()["embeddings"]
output_data = []
for idx, embedding in enumerate(embeddings):
output_data.append(
{"object": "embedding", "index": idx, "embedding": embedding}
)
model_response["object"] = "list"
model_response["data"] = output_data
model_response["model"] = model
input_tokens = 0
for text in input:
input_tokens += len(encoding.encode(text))
model_response["usage"] = Usage(
prompt_tokens=input_tokens, completion_tokens=0, total_tokens=input_tokens
)
return model_response