litellm-mirror/litellm/llms/sagemaker.py

755 lines
27 KiB
Python

import os, types, traceback
from enum import Enum
import json
import requests # type: ignore
import time
from typing import Callable, Optional, Any
import litellm
from litellm.utils import ModelResponse, EmbeddingResponse, get_secret, Usage
import sys
from copy import deepcopy
import httpx # type: ignore
from .prompt_templates.factory import prompt_factory, custom_prompt
class SagemakerError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
self.request = httpx.Request(
method="POST", url="https://us-west-2.console.aws.amazon.com/sagemaker"
)
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
import io
import json
class TokenIterator:
def __init__(self, stream, acompletion: bool = False):
if acompletion == False:
self.byte_iterator = iter(stream)
elif acompletion == True:
self.byte_iterator = stream
self.buffer = io.BytesIO()
self.read_pos = 0
self.end_of_data = False
def __iter__(self):
return self
def __next__(self):
try:
while True:
self.buffer.seek(self.read_pos)
line = self.buffer.readline()
if line and line[-1] == ord("\n"):
response_obj = {"text": "", "is_finished": False}
self.read_pos += len(line) + 1
full_line = line[:-1].decode("utf-8")
line_data = json.loads(full_line.lstrip("data:").rstrip("/n"))
if line_data.get("generated_text", None) is not None:
self.end_of_data = True
response_obj["is_finished"] = True
response_obj["text"] = line_data["token"]["text"]
return response_obj
chunk = next(self.byte_iterator)
self.buffer.seek(0, io.SEEK_END)
self.buffer.write(chunk["PayloadPart"]["Bytes"])
except StopIteration as e:
if self.end_of_data == True:
raise e # Re-raise StopIteration
else:
self.end_of_data = True
return "data: [DONE]"
def __aiter__(self):
return self
async def __anext__(self):
try:
while True:
self.buffer.seek(self.read_pos)
line = self.buffer.readline()
if line and line[-1] == ord("\n"):
response_obj = {"text": "", "is_finished": False}
self.read_pos += len(line) + 1
full_line = line[:-1].decode("utf-8")
line_data = json.loads(full_line.lstrip("data:").rstrip("/n"))
if line_data.get("generated_text", None) is not None:
self.end_of_data = True
response_obj["is_finished"] = True
response_obj["text"] = line_data["token"]["text"]
return response_obj
chunk = await self.byte_iterator.__anext__()
self.buffer.seek(0, io.SEEK_END)
self.buffer.write(chunk["PayloadPart"]["Bytes"])
except StopAsyncIteration as e:
if self.end_of_data == True:
raise e # Re-raise StopIteration
else:
self.end_of_data = True
return "data: [DONE]"
class SagemakerConfig:
"""
Reference: https://d-uuwbxj1u4cnu.studio.us-west-2.sagemaker.aws/jupyter/default/lab/workspaces/auto-q/tree/DemoNotebooks/meta-textgeneration-llama-2-7b-SDK_1.ipynb
"""
max_new_tokens: Optional[int] = None
top_p: Optional[float] = None
temperature: Optional[float] = None
return_full_text: Optional[bool] = None
def __init__(
self,
max_new_tokens: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
return_full_text: Optional[bool] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
"""
SAGEMAKER AUTH Keys/Vars
os.environ['AWS_ACCESS_KEY_ID'] = ""
os.environ['AWS_SECRET_ACCESS_KEY'] = ""
"""
# set os.environ['AWS_REGION_NAME'] = <your-region_name>
def completion(
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
logging_obj,
custom_prompt_dict={},
hf_model_name=None,
optional_params=None,
litellm_params=None,
logger_fn=None,
acompletion: bool = False,
):
import boto3
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
aws_region_name = optional_params.pop("aws_region_name", None)
model_id = optional_params.pop("model_id", None)
if aws_access_key_id != None:
# uses auth params passed to completion
# aws_access_key_id is not None, assume user is trying to auth using litellm.completion
client = boto3.client(
service_name="sagemaker-runtime",
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
region_name=aws_region_name,
)
else:
# aws_access_key_id is None, assume user is trying to auth using env variables
# boto3 automaticaly reads env variables
# we need to read region name from env
# I assume majority of users use .env for auth
region_name = (
get_secret("AWS_REGION_NAME")
or "us-west-2" # default to us-west-2 if user not specified
)
client = boto3.client(
service_name="sagemaker-runtime",
region_name=region_name,
)
# pop streaming if it's in the optional params as 'stream' raises an error with sagemaker
inference_params = deepcopy(optional_params)
## Load Config
config = litellm.SagemakerConfig.get_config()
for k, v in config.items():
if (
k not in inference_params
): # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
model = model
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details.get("roles", None),
initial_prompt_value=model_prompt_details.get("initial_prompt_value", ""),
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
messages=messages,
)
elif hf_model_name in custom_prompt_dict:
# check if the base huggingface model has a registered custom prompt
model_prompt_details = custom_prompt_dict[hf_model_name]
prompt = custom_prompt(
role_dict=model_prompt_details.get("roles", None),
initial_prompt_value=model_prompt_details.get("initial_prompt_value", ""),
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
messages=messages,
)
else:
if hf_model_name is None:
if "llama-2" in model.lower(): # llama-2 model
if "chat" in model.lower(): # apply llama2 chat template
hf_model_name = "meta-llama/Llama-2-7b-chat-hf"
else: # apply regular llama2 template
hf_model_name = "meta-llama/Llama-2-7b"
hf_model_name = (
hf_model_name or model
) # pass in hf model name for pulling it's prompt template - (e.g. `hf_model_name="meta-llama/Llama-2-7b-chat-hf` applies the llama2 chat template to the prompt)
prompt = prompt_factory(model=hf_model_name, messages=messages)
stream = inference_params.pop("stream", None)
if stream == True:
data = json.dumps(
{"inputs": prompt, "parameters": inference_params, "stream": True}
).encode("utf-8")
if acompletion == True:
response = async_streaming(
optional_params=optional_params,
encoding=encoding,
model_response=model_response,
model=model,
logging_obj=logging_obj,
data=data,
model_id=model_id,
aws_secret_access_key=aws_secret_access_key,
aws_access_key_id=aws_access_key_id,
aws_region_name=aws_region_name,
)
return response
if model_id is not None:
response = client.invoke_endpoint_with_response_stream(
EndpointName=model,
InferenceComponentName=model_id,
ContentType="application/json",
Body=data,
CustomAttributes="accept_eula=true",
)
else:
response = client.invoke_endpoint_with_response_stream(
EndpointName=model,
ContentType="application/json",
Body=data,
CustomAttributes="accept_eula=true",
)
return response["Body"]
elif acompletion == True:
_data = {"inputs": prompt, "parameters": inference_params}
return async_completion(
optional_params=optional_params,
encoding=encoding,
model_response=model_response,
model=model,
logging_obj=logging_obj,
data=_data,
model_id=model_id,
aws_secret_access_key=aws_secret_access_key,
aws_access_key_id=aws_access_key_id,
aws_region_name=aws_region_name,
)
data = json.dumps({"inputs": prompt, "parameters": inference_params}).encode(
"utf-8"
)
## COMPLETION CALL
try:
if model_id is not None:
## LOGGING
request_str = f"""
response = client.invoke_endpoint(
EndpointName={model},
InferenceComponentName={model_id},
ContentType="application/json",
Body={data}, # type: ignore
CustomAttributes="accept_eula=true",
)
""" # type: ignore
logging_obj.pre_call(
input=prompt,
api_key="",
additional_args={
"complete_input_dict": data,
"request_str": request_str,
"hf_model_name": hf_model_name,
},
)
response = client.invoke_endpoint(
EndpointName=model,
InferenceComponentName=model_id,
ContentType="application/json",
Body=data,
CustomAttributes="accept_eula=true",
)
else:
## LOGGING
request_str = f"""
response = client.invoke_endpoint(
EndpointName={model},
ContentType="application/json",
Body={data}, # type: ignore
CustomAttributes="accept_eula=true",
)
""" # type: ignore
logging_obj.pre_call(
input=prompt,
api_key="",
additional_args={
"complete_input_dict": data,
"request_str": request_str,
"hf_model_name": hf_model_name,
},
)
response = client.invoke_endpoint(
EndpointName=model,
ContentType="application/json",
Body=data,
CustomAttributes="accept_eula=true",
)
except Exception as e:
status_code = (
getattr(e, "response", {})
.get("ResponseMetadata", {})
.get("HTTPStatusCode", 500)
)
error_message = (
getattr(e, "response", {}).get("Error", {}).get("Message", str(e))
)
if "Inference Component Name header is required" in error_message:
error_message += "\n pass in via `litellm.completion(..., model_id={InferenceComponentName})`"
raise SagemakerError(status_code=status_code, message=error_message)
response = response["Body"].read().decode("utf8")
## LOGGING
logging_obj.post_call(
input=prompt,
api_key="",
original_response=response,
additional_args={"complete_input_dict": data},
)
print_verbose(f"raw model_response: {response}")
## RESPONSE OBJECT
completion_response = json.loads(response)
try:
if isinstance(completion_response, list):
completion_response_choices = completion_response[0]
else:
completion_response_choices = completion_response
completion_output = ""
if "generation" in completion_response_choices:
completion_output += completion_response_choices["generation"]
elif "generated_text" in completion_response_choices:
completion_output += completion_response_choices["generated_text"]
# check if the prompt template is part of output, if so - filter it out
if completion_output.startswith(prompt) and "<s>" in prompt:
completion_output = completion_output.replace(prompt, "", 1)
model_response["choices"][0]["message"]["content"] = completion_output
except:
raise SagemakerError(
message=f"LiteLLM Error: Unable to parse sagemaker RAW RESPONSE {json.dumps(completion_response)}",
status_code=500,
)
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
prompt_tokens = len(encoding.encode(prompt))
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
)
model_response["created"] = int(time.time())
model_response["model"] = model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
setattr(model_response, "usage", usage)
return model_response
async def async_streaming(
optional_params,
encoding,
model_response: ModelResponse,
model: str,
model_id: Optional[str],
logging_obj: Any,
data,
aws_secret_access_key: Optional[str],
aws_access_key_id: Optional[str],
aws_region_name: Optional[str],
):
"""
Use aioboto3
"""
import aioboto3
session = aioboto3.Session()
if aws_access_key_id != None:
# uses auth params passed to completion
# aws_access_key_id is not None, assume user is trying to auth using litellm.completion
_client = session.client(
service_name="sagemaker-runtime",
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
region_name=aws_region_name,
)
else:
# aws_access_key_id is None, assume user is trying to auth using env variables
# boto3 automaticaly reads env variables
# we need to read region name from env
# I assume majority of users use .env for auth
region_name = (
get_secret("AWS_REGION_NAME")
or "us-west-2" # default to us-west-2 if user not specified
)
_client = session.client(
service_name="sagemaker-runtime",
region_name=region_name,
)
async with _client as client:
try:
if model_id is not None:
response = await client.invoke_endpoint_with_response_stream(
EndpointName=model,
InferenceComponentName=model_id,
ContentType="application/json",
Body=data,
CustomAttributes="accept_eula=true",
)
else:
response = await client.invoke_endpoint_with_response_stream(
EndpointName=model,
ContentType="application/json",
Body=data,
CustomAttributes="accept_eula=true",
)
except Exception as e:
raise SagemakerError(status_code=500, message=f"{str(e)}")
response = response["Body"]
async for chunk in response:
yield chunk
async def async_completion(
optional_params,
encoding,
model_response: ModelResponse,
model: str,
logging_obj: Any,
data: dict,
model_id: Optional[str],
aws_secret_access_key: Optional[str],
aws_access_key_id: Optional[str],
aws_region_name: Optional[str],
):
"""
Use aioboto3
"""
import aioboto3
session = aioboto3.Session()
if aws_access_key_id != None:
# uses auth params passed to completion
# aws_access_key_id is not None, assume user is trying to auth using litellm.completion
_client = session.client(
service_name="sagemaker-runtime",
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
region_name=aws_region_name,
)
else:
# aws_access_key_id is None, assume user is trying to auth using env variables
# boto3 automaticaly reads env variables
# we need to read region name from env
# I assume majority of users use .env for auth
region_name = (
get_secret("AWS_REGION_NAME")
or "us-west-2" # default to us-west-2 if user not specified
)
_client = session.client(
service_name="sagemaker-runtime",
region_name=region_name,
)
async with _client as client:
encoded_data = json.dumps(data).encode("utf-8")
try:
if model_id is not None:
## LOGGING
request_str = f"""
response = client.invoke_endpoint(
EndpointName={model},
InferenceComponentName={model_id},
ContentType="application/json",
Body={data},
CustomAttributes="accept_eula=true",
)
""" # type: ignore
logging_obj.pre_call(
input=data["inputs"],
api_key="",
additional_args={
"complete_input_dict": data,
"request_str": request_str,
},
)
response = await client.invoke_endpoint(
EndpointName=model,
InferenceComponentName=model_id,
ContentType="application/json",
Body=encoded_data,
CustomAttributes="accept_eula=true",
)
else:
## LOGGING
request_str = f"""
response = client.invoke_endpoint(
EndpointName={model},
ContentType="application/json",
Body={data},
CustomAttributes="accept_eula=true",
)
""" # type: ignore
logging_obj.pre_call(
input=data["inputs"],
api_key="",
additional_args={
"complete_input_dict": data,
"request_str": request_str,
},
)
response = await client.invoke_endpoint(
EndpointName=model,
ContentType="application/json",
Body=encoded_data,
CustomAttributes="accept_eula=true",
)
except Exception as e:
error_message = f"{str(e)}"
if "Inference Component Name header is required" in error_message:
error_message += "\n pass in via `litellm.completion(..., model_id={InferenceComponentName})`"
raise SagemakerError(status_code=500, message=error_message)
response = await response["Body"].read()
response = response.decode("utf8")
## LOGGING
logging_obj.post_call(
input=data["inputs"],
api_key="",
original_response=response,
additional_args={"complete_input_dict": data},
)
## RESPONSE OBJECT
completion_response = json.loads(response)
try:
if isinstance(completion_response, list):
completion_response_choices = completion_response[0]
else:
completion_response_choices = completion_response
completion_output = ""
if "generation" in completion_response_choices:
completion_output += completion_response_choices["generation"]
elif "generated_text" in completion_response_choices:
completion_output += completion_response_choices["generated_text"]
# check if the prompt template is part of output, if so - filter it out
if completion_output.startswith(data["inputs"]) and "<s>" in data["inputs"]:
completion_output = completion_output.replace(data["inputs"], "", 1)
model_response["choices"][0]["message"]["content"] = completion_output
except:
raise SagemakerError(
message=f"LiteLLM Error: Unable to parse sagemaker RAW RESPONSE {json.dumps(completion_response)}",
status_code=500,
)
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
prompt_tokens = len(encoding.encode(data["inputs"]))
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
)
model_response["created"] = int(time.time())
model_response["model"] = model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
setattr(model_response, "usage", usage)
return model_response
def embedding(
model: str,
input: list,
model_response: EmbeddingResponse,
print_verbose: Callable,
encoding,
logging_obj,
custom_prompt_dict={},
optional_params=None,
litellm_params=None,
logger_fn=None,
):
"""
Supports Huggingface Jumpstart embeddings like GPT-6B
"""
### BOTO3 INIT
import boto3
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
aws_region_name = optional_params.pop("aws_region_name", None)
if aws_access_key_id is not None:
# uses auth params passed to completion
# aws_access_key_id is not None, assume user is trying to auth using litellm.completion
client = boto3.client(
service_name="sagemaker-runtime",
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
region_name=aws_region_name,
)
else:
# aws_access_key_id is None, assume user is trying to auth using env variables
# boto3 automaticaly reads env variables
# we need to read region name from env
# I assume majority of users use .env for auth
region_name = (
get_secret("AWS_REGION_NAME")
or "us-west-2" # default to us-west-2 if user not specified
)
client = boto3.client(
service_name="sagemaker-runtime",
region_name=region_name,
)
# pop streaming if it's in the optional params as 'stream' raises an error with sagemaker
inference_params = deepcopy(optional_params)
inference_params.pop("stream", None)
## Load Config
config = litellm.SagemakerConfig.get_config()
for k, v in config.items():
if (
k not in inference_params
): # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
#### HF EMBEDDING LOGIC
data = json.dumps({"text_inputs": input}).encode("utf-8")
## LOGGING
request_str = f"""
response = client.invoke_endpoint(
EndpointName={model},
ContentType="application/json",
Body={data}, # type: ignore
CustomAttributes="accept_eula=true",
)""" # type: ignore
logging_obj.pre_call(
input=input,
api_key="",
additional_args={"complete_input_dict": data, "request_str": request_str},
)
## EMBEDDING CALL
try:
response = client.invoke_endpoint(
EndpointName=model,
ContentType="application/json",
Body=data,
CustomAttributes="accept_eula=true",
)
except Exception as e:
status_code = (
getattr(e, "response", {})
.get("ResponseMetadata", {})
.get("HTTPStatusCode", 500)
)
error_message = (
getattr(e, "response", {}).get("Error", {}).get("Message", str(e))
)
raise SagemakerError(status_code=status_code, message=error_message)
response = json.loads(response["Body"].read().decode("utf8"))
## LOGGING
logging_obj.post_call(
input=input,
api_key="",
original_response=response,
additional_args={"complete_input_dict": data},
)
print_verbose(f"raw model_response: {response}")
if "embedding" not in response:
raise SagemakerError(status_code=500, message="embedding not found in response")
embeddings = response["embedding"]
if not isinstance(embeddings, list):
raise SagemakerError(
status_code=422, message=f"Response not in expected format - {embeddings}"
)
output_data = []
for idx, embedding in enumerate(embeddings):
output_data.append(
{"object": "embedding", "index": idx, "embedding": embedding}
)
model_response["object"] = "list"
model_response["data"] = output_data
model_response["model"] = model
input_tokens = 0
for text in input:
input_tokens += len(encoding.encode(text))
model_response["usage"] = Usage(
prompt_tokens=input_tokens, completion_tokens=0, total_tokens=input_tokens
)
return model_response