litellm-mirror/litellm/llms/base_llm/rerank/transformation.py
Krish Dholakia d82fa10f93 Add cohere v2/rerank support (#8421) (#8605)
* Add cohere v2/rerank support (#8421)

* Support v2 endpoint cohere rerank

* Add tests and docs

* Make v1 default if old params used

* Update docs

* Update docs pt 2

* Update tests

* Add e2e test

* Clean up code

* Use inheritence for new config

* Fix linting issues (#8608)

* Fix cohere v2 failing test + linting (#8672)

* Fix test and unused imports

* Fix tests

* fix: fix linting errors

* test: handle tgai instability

* fix: skip service unavailable err

* test: print logs for unstable test

* test: skip unreliable tests

---------

Co-authored-by: vibhavbhat <vibhavb00@gmail.com>
2025-02-22 22:25:29 -08:00

128 lines
3.7 KiB
Python

from abc import ABC, abstractmethod
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import httpx
from litellm.types.rerank import OptionalRerankParams, RerankBilledUnits, RerankResponse
from litellm.types.utils import ModelInfo
from ..chat.transformation import BaseLLMException
if TYPE_CHECKING:
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
LiteLLMLoggingObj = _LiteLLMLoggingObj
else:
LiteLLMLoggingObj = Any
class BaseRerankConfig(ABC):
@abstractmethod
def validate_environment(
self,
headers: dict,
model: str,
api_key: Optional[str] = None,
) -> dict:
pass
@abstractmethod
def transform_rerank_request(
self,
model: str,
optional_rerank_params: OptionalRerankParams,
headers: dict,
) -> dict:
return {}
@abstractmethod
def transform_rerank_response(
self,
model: str,
raw_response: httpx.Response,
model_response: RerankResponse,
logging_obj: LiteLLMLoggingObj,
api_key: Optional[str] = None,
request_data: dict = {},
optional_params: dict = {},
litellm_params: dict = {},
) -> RerankResponse:
return model_response
@abstractmethod
def get_complete_url(self, api_base: Optional[str], model: str) -> str:
"""
OPTIONAL
Get the complete url for the request
Some providers need `model` in `api_base`
"""
return api_base or ""
@abstractmethod
def get_supported_cohere_rerank_params(self, model: str) -> list:
pass
@abstractmethod
def map_cohere_rerank_params(
self,
non_default_params: dict,
model: str,
drop_params: bool,
query: str,
documents: List[Union[str, Dict[str, Any]]],
custom_llm_provider: Optional[str] = None,
top_n: Optional[int] = None,
rank_fields: Optional[List[str]] = None,
return_documents: Optional[bool] = True,
max_chunks_per_doc: Optional[int] = None,
max_tokens_per_doc: Optional[int] = None,
) -> OptionalRerankParams:
pass
def get_error_class(
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
) -> BaseLLMException:
raise BaseLLMException(
status_code=status_code,
message=error_message,
headers=headers,
)
def calculate_rerank_cost(
self,
model: str,
custom_llm_provider: Optional[str] = None,
billed_units: Optional[RerankBilledUnits] = None,
model_info: Optional[ModelInfo] = None,
) -> Tuple[float, float]:
"""
Calculates the cost per query for a given rerank model.
Input:
- model: str, the model name without provider prefix
- custom_llm_provider: str, the provider used for the model. If provided, used to check if the litellm model info is for that provider.
- num_queries: int, the number of queries to calculate the cost for
- model_info: ModelInfo, the model info for the given model
Returns:
Tuple[float, float] - prompt_cost_in_usd, completion_cost_in_usd
"""
if (
model_info is None
or "input_cost_per_query" not in model_info
or model_info["input_cost_per_query"] is None
or billed_units is None
):
return 0.0, 0.0
search_units = billed_units.get("search_units")
if search_units is None:
return 0.0, 0.0
prompt_cost = model_info["input_cost_per_query"] * search_units
return prompt_cost, 0.0