mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 11:14:04 +00:00
* test(test_amazing_vertex_completion.py): fix test * test: initial working code gecko test * fix(vertex_ai_non_gemini.py): support vertex ai code gecko fake streaming Fixes https://github.com/BerriAI/litellm/issues/7360 * test(test_get_model_info.py): add test for getting custom provider model info Covers https://github.com/BerriAI/litellm/issues/7575 * fix(utils.py): fix get_provider_model_info check Handle custom llm provider scenario Fixes https://github.com/ BerriAI/litellm/issues/7575
784 lines
29 KiB
Python
784 lines
29 KiB
Python
import json
|
|
import os
|
|
import time
|
|
from typing import Any, Callable, Optional, cast
|
|
|
|
import httpx
|
|
|
|
import litellm
|
|
from litellm.litellm_core_utils.core_helpers import map_finish_reason
|
|
from litellm.llms.bedrock.common_utils import ModelResponseIterator
|
|
from litellm.llms.custom_httpx.http_handler import _DEFAULT_TTL_FOR_HTTPX_CLIENTS
|
|
from litellm.types.llms.vertex_ai import *
|
|
from litellm.utils import CustomStreamWrapper, ModelResponse, Usage
|
|
|
|
|
|
class VertexAIError(Exception):
|
|
def __init__(self, status_code, message):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
self.request = httpx.Request(
|
|
method="POST", url=" https://cloud.google.com/vertex-ai/"
|
|
)
|
|
self.response = httpx.Response(status_code=status_code, request=self.request)
|
|
super().__init__(
|
|
self.message
|
|
) # Call the base class constructor with the parameters it needs
|
|
|
|
|
|
class TextStreamer:
|
|
"""
|
|
Fake streaming iterator for Vertex AI Model Garden calls
|
|
"""
|
|
|
|
def __init__(self, text):
|
|
self.text = text.split() # let's assume words as a streaming unit
|
|
self.index = 0
|
|
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __next__(self):
|
|
if self.index < len(self.text):
|
|
result = self.text[self.index]
|
|
self.index += 1
|
|
return result
|
|
else:
|
|
raise StopIteration
|
|
|
|
def __aiter__(self):
|
|
return self
|
|
|
|
async def __anext__(self):
|
|
if self.index < len(self.text):
|
|
result = self.text[self.index]
|
|
self.index += 1
|
|
return result
|
|
else:
|
|
raise StopAsyncIteration # once we run out of data to stream, we raise this error
|
|
|
|
|
|
def _get_client_cache_key(
|
|
model: str, vertex_project: Optional[str], vertex_location: Optional[str]
|
|
):
|
|
_cache_key = f"{model}-{vertex_project}-{vertex_location}"
|
|
return _cache_key
|
|
|
|
|
|
def _get_client_from_cache(client_cache_key: str):
|
|
return litellm.in_memory_llm_clients_cache.get_cache(client_cache_key)
|
|
|
|
|
|
def _set_client_in_cache(client_cache_key: str, vertex_llm_model: Any):
|
|
litellm.in_memory_llm_clients_cache.set_cache(
|
|
key=client_cache_key,
|
|
value=vertex_llm_model,
|
|
ttl=_DEFAULT_TTL_FOR_HTTPX_CLIENTS,
|
|
)
|
|
|
|
|
|
def completion( # noqa: PLR0915
|
|
model: str,
|
|
messages: list,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
logging_obj,
|
|
optional_params: dict,
|
|
vertex_project=None,
|
|
vertex_location=None,
|
|
vertex_credentials=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
acompletion: bool = False,
|
|
):
|
|
"""
|
|
NON-GEMINI/ANTHROPIC CALLS.
|
|
|
|
This is the handler for OLDER PALM MODELS and VERTEX AI MODEL GARDEN
|
|
|
|
For Vertex AI Anthropic: `vertex_anthropic.py`
|
|
For Gemini: `vertex_httpx.py`
|
|
"""
|
|
try:
|
|
import vertexai
|
|
except Exception:
|
|
raise VertexAIError(
|
|
status_code=400,
|
|
message="vertexai import failed please run `pip install google-cloud-aiplatform`. This is required for the 'vertex_ai/' route on LiteLLM",
|
|
)
|
|
|
|
if not (
|
|
hasattr(vertexai, "preview") or hasattr(vertexai.preview, "language_models")
|
|
):
|
|
raise VertexAIError(
|
|
status_code=400,
|
|
message="""Upgrade vertex ai. Run `pip install "google-cloud-aiplatform>=1.38"`""",
|
|
)
|
|
try:
|
|
import google.auth # type: ignore
|
|
from google.cloud import aiplatform # type: ignore
|
|
from google.cloud.aiplatform_v1beta1.types import (
|
|
content as gapic_content_types, # type: ignore
|
|
)
|
|
from google.protobuf import json_format # type: ignore
|
|
from google.protobuf.struct_pb2 import Value # type: ignore
|
|
from vertexai.language_models import CodeGenerationModel, TextGenerationModel
|
|
from vertexai.preview.generative_models import GenerativeModel
|
|
from vertexai.preview.language_models import ChatModel, CodeChatModel
|
|
|
|
## Load credentials with the correct quota project ref: https://github.com/googleapis/python-aiplatform/issues/2557#issuecomment-1709284744
|
|
print_verbose(
|
|
f"VERTEX AI: vertex_project={vertex_project}; vertex_location={vertex_location}"
|
|
)
|
|
|
|
_cache_key = _get_client_cache_key(
|
|
model=model, vertex_project=vertex_project, vertex_location=vertex_location
|
|
)
|
|
_vertex_llm_model_object = _get_client_from_cache(client_cache_key=_cache_key)
|
|
|
|
if _vertex_llm_model_object is None:
|
|
from google.auth.credentials import Credentials
|
|
|
|
if vertex_credentials is not None and isinstance(vertex_credentials, str):
|
|
import google.oauth2.service_account
|
|
|
|
json_obj = json.loads(vertex_credentials)
|
|
|
|
creds = (
|
|
google.oauth2.service_account.Credentials.from_service_account_info(
|
|
json_obj,
|
|
scopes=["https://www.googleapis.com/auth/cloud-platform"],
|
|
)
|
|
)
|
|
else:
|
|
creds, _ = google.auth.default(quota_project_id=vertex_project)
|
|
print_verbose(
|
|
f"VERTEX AI: creds={creds}; google application credentials: {os.getenv('GOOGLE_APPLICATION_CREDENTIALS')}"
|
|
)
|
|
vertexai.init(
|
|
project=vertex_project,
|
|
location=vertex_location,
|
|
credentials=cast(Credentials, creds),
|
|
)
|
|
|
|
## Load Config
|
|
config = litellm.VertexAIConfig.get_config()
|
|
for k, v in config.items():
|
|
if k not in optional_params:
|
|
optional_params[k] = v
|
|
|
|
## Process safety settings into format expected by vertex AI
|
|
safety_settings = None
|
|
if "safety_settings" in optional_params:
|
|
safety_settings = optional_params.pop("safety_settings")
|
|
if not isinstance(safety_settings, list):
|
|
raise ValueError("safety_settings must be a list")
|
|
if len(safety_settings) > 0 and not isinstance(safety_settings[0], dict):
|
|
raise ValueError("safety_settings must be a list of dicts")
|
|
safety_settings = [
|
|
gapic_content_types.SafetySetting(x) for x in safety_settings
|
|
]
|
|
|
|
# vertexai does not use an API key, it looks for credentials.json in the environment
|
|
|
|
prompt = " ".join(
|
|
[
|
|
message.get("content")
|
|
for message in messages
|
|
if isinstance(message.get("content", None), str)
|
|
]
|
|
)
|
|
|
|
mode = ""
|
|
|
|
request_str = ""
|
|
response_obj = None
|
|
instances = None
|
|
client_options = {
|
|
"api_endpoint": f"{vertex_location}-aiplatform.googleapis.com"
|
|
}
|
|
fake_stream = False
|
|
if (
|
|
model in litellm.vertex_language_models
|
|
or model in litellm.vertex_vision_models
|
|
):
|
|
llm_model: Any = _vertex_llm_model_object or GenerativeModel(model)
|
|
mode = "vision"
|
|
request_str += f"llm_model = GenerativeModel({model})\n"
|
|
elif model in litellm.vertex_chat_models:
|
|
llm_model = _vertex_llm_model_object or ChatModel.from_pretrained(model)
|
|
mode = "chat"
|
|
request_str += f"llm_model = ChatModel.from_pretrained({model})\n"
|
|
elif model in litellm.vertex_text_models:
|
|
llm_model = _vertex_llm_model_object or TextGenerationModel.from_pretrained(
|
|
model
|
|
)
|
|
mode = "text"
|
|
request_str += f"llm_model = TextGenerationModel.from_pretrained({model})\n"
|
|
elif model in litellm.vertex_code_text_models:
|
|
llm_model = _vertex_llm_model_object or CodeGenerationModel.from_pretrained(
|
|
model
|
|
)
|
|
mode = "text"
|
|
request_str += f"llm_model = CodeGenerationModel.from_pretrained({model})\n"
|
|
fake_stream = True
|
|
elif model in litellm.vertex_code_chat_models: # vertex_code_llm_models
|
|
llm_model = _vertex_llm_model_object or CodeChatModel.from_pretrained(model)
|
|
mode = "chat"
|
|
request_str += f"llm_model = CodeChatModel.from_pretrained({model})\n"
|
|
elif model == "private":
|
|
mode = "private"
|
|
model = optional_params.pop("model_id", None)
|
|
# private endpoint requires a dict instead of JSON
|
|
instances = [optional_params.copy()]
|
|
instances[0]["prompt"] = prompt
|
|
llm_model = aiplatform.PrivateEndpoint(
|
|
endpoint_name=model,
|
|
project=vertex_project,
|
|
location=vertex_location,
|
|
)
|
|
request_str += f"llm_model = aiplatform.PrivateEndpoint(endpoint_name={model}, project={vertex_project}, location={vertex_location})\n"
|
|
else: # assume vertex model garden on public endpoint
|
|
mode = "custom"
|
|
|
|
instances = [optional_params.copy()]
|
|
instances[0]["prompt"] = prompt
|
|
instances = [
|
|
json_format.ParseDict(instance_dict, Value())
|
|
for instance_dict in instances
|
|
]
|
|
# Will determine the API used based on async parameter
|
|
llm_model = None
|
|
|
|
# NOTE: async prediction and streaming under "private" mode isn't supported by aiplatform right now
|
|
if acompletion is True:
|
|
data = {
|
|
"llm_model": llm_model,
|
|
"mode": mode,
|
|
"prompt": prompt,
|
|
"logging_obj": logging_obj,
|
|
"request_str": request_str,
|
|
"model": model,
|
|
"model_response": model_response,
|
|
"encoding": encoding,
|
|
"messages": messages,
|
|
"print_verbose": print_verbose,
|
|
"client_options": client_options,
|
|
"instances": instances,
|
|
"vertex_location": vertex_location,
|
|
"vertex_project": vertex_project,
|
|
"safety_settings": safety_settings,
|
|
**optional_params,
|
|
}
|
|
if optional_params.get("stream", False) is True:
|
|
# async streaming
|
|
return async_streaming(**data)
|
|
|
|
return async_completion(**data)
|
|
|
|
completion_response = None
|
|
|
|
stream = optional_params.pop(
|
|
"stream", None
|
|
) # See note above on handling streaming for vertex ai
|
|
if mode == "chat":
|
|
chat = llm_model.start_chat()
|
|
request_str += "chat = llm_model.start_chat()\n"
|
|
|
|
if fake_stream is not True and stream is True:
|
|
# NOTE: VertexAI does not accept stream=True as a param and raises an error,
|
|
# we handle this by removing 'stream' from optional params and sending the request
|
|
# after we get the response we add optional_params["stream"] = True, since main.py needs to know it's a streaming response to then transform it for the OpenAI format
|
|
optional_params.pop(
|
|
"stream", None
|
|
) # vertex ai raises an error when passing stream in optional params
|
|
|
|
request_str += (
|
|
f"chat.send_message_streaming({prompt}, **{optional_params})\n"
|
|
)
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
|
|
model_response = chat.send_message_streaming(prompt, **optional_params)
|
|
|
|
return model_response
|
|
|
|
request_str += f"chat.send_message({prompt}, **{optional_params}).text\n"
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
completion_response = chat.send_message(prompt, **optional_params).text
|
|
elif mode == "text":
|
|
|
|
if fake_stream is not True and stream is True:
|
|
request_str += (
|
|
f"llm_model.predict_streaming({prompt}, **{optional_params})\n"
|
|
)
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
model_response = llm_model.predict_streaming(prompt, **optional_params)
|
|
|
|
return model_response
|
|
|
|
request_str += f"llm_model.predict({prompt}, **{optional_params}).text\n"
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
completion_response = llm_model.predict(prompt, **optional_params).text
|
|
elif mode == "custom":
|
|
"""
|
|
Vertex AI Model Garden
|
|
"""
|
|
|
|
if vertex_project is None or vertex_location is None:
|
|
raise ValueError(
|
|
"Vertex project and location are required for custom endpoint"
|
|
)
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
llm_model = aiplatform.gapic.PredictionServiceClient(
|
|
client_options=client_options
|
|
)
|
|
request_str += f"llm_model = aiplatform.gapic.PredictionServiceClient(client_options={client_options})\n"
|
|
endpoint_path = llm_model.endpoint_path(
|
|
project=vertex_project, location=vertex_location, endpoint=model
|
|
)
|
|
request_str += (
|
|
f"llm_model.predict(endpoint={endpoint_path}, instances={instances})\n"
|
|
)
|
|
response = llm_model.predict(
|
|
endpoint=endpoint_path, instances=instances
|
|
).predictions
|
|
|
|
completion_response = response[0]
|
|
if (
|
|
isinstance(completion_response, str)
|
|
and "\nOutput:\n" in completion_response
|
|
):
|
|
completion_response = completion_response.split("\nOutput:\n", 1)[1]
|
|
if stream is True:
|
|
response = TextStreamer(completion_response)
|
|
return response
|
|
elif mode == "private":
|
|
"""
|
|
Vertex AI Model Garden deployed on private endpoint
|
|
"""
|
|
if instances is None:
|
|
raise ValueError("instances are required for private endpoint")
|
|
if llm_model is None:
|
|
raise ValueError("Unable to pick client for private endpoint")
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
request_str += f"llm_model.predict(instances={instances})\n"
|
|
response = llm_model.predict(instances=instances).predictions
|
|
|
|
completion_response = response[0]
|
|
if (
|
|
isinstance(completion_response, str)
|
|
and "\nOutput:\n" in completion_response
|
|
):
|
|
completion_response = completion_response.split("\nOutput:\n", 1)[1]
|
|
if stream is True:
|
|
response = TextStreamer(completion_response)
|
|
return response
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=prompt, api_key=None, original_response=completion_response
|
|
)
|
|
|
|
## RESPONSE OBJECT
|
|
if isinstance(completion_response, litellm.Message):
|
|
model_response.choices[0].message = completion_response # type: ignore
|
|
elif len(str(completion_response)) > 0:
|
|
model_response.choices[0].message.content = str(completion_response) # type: ignore
|
|
model_response.created = int(time.time())
|
|
model_response.model = model
|
|
## CALCULATING USAGE
|
|
if model in litellm.vertex_language_models and response_obj is not None:
|
|
model_response.choices[0].finish_reason = map_finish_reason(
|
|
response_obj.candidates[0].finish_reason.name
|
|
)
|
|
usage = Usage(
|
|
prompt_tokens=response_obj.usage_metadata.prompt_token_count,
|
|
completion_tokens=response_obj.usage_metadata.candidates_token_count,
|
|
total_tokens=response_obj.usage_metadata.total_token_count,
|
|
)
|
|
else:
|
|
# init prompt tokens
|
|
# this block attempts to get usage from response_obj if it exists, if not it uses the litellm token counter
|
|
prompt_tokens, completion_tokens, _ = 0, 0, 0
|
|
if response_obj is not None:
|
|
if hasattr(response_obj, "usage_metadata") and hasattr(
|
|
response_obj.usage_metadata, "prompt_token_count"
|
|
):
|
|
prompt_tokens = response_obj.usage_metadata.prompt_token_count
|
|
completion_tokens = (
|
|
response_obj.usage_metadata.candidates_token_count
|
|
)
|
|
else:
|
|
prompt_tokens = len(encoding.encode(prompt))
|
|
completion_tokens = len(
|
|
encoding.encode(
|
|
model_response["choices"][0]["message"].get("content", "")
|
|
)
|
|
)
|
|
|
|
usage = Usage(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens,
|
|
)
|
|
setattr(model_response, "usage", usage)
|
|
|
|
if fake_stream is True and stream is True:
|
|
return ModelResponseIterator(model_response)
|
|
return model_response
|
|
except Exception as e:
|
|
if isinstance(e, VertexAIError):
|
|
raise e
|
|
raise litellm.APIConnectionError(
|
|
message=str(e), llm_provider="vertex_ai", model=model
|
|
)
|
|
|
|
|
|
async def async_completion( # noqa: PLR0915
|
|
llm_model,
|
|
mode: str,
|
|
prompt: str,
|
|
model: str,
|
|
messages: list,
|
|
model_response: ModelResponse,
|
|
request_str: str,
|
|
print_verbose: Callable,
|
|
logging_obj,
|
|
encoding,
|
|
client_options=None,
|
|
instances=None,
|
|
vertex_project=None,
|
|
vertex_location=None,
|
|
safety_settings=None,
|
|
**optional_params,
|
|
):
|
|
"""
|
|
Add support for acompletion calls for gemini-pro
|
|
"""
|
|
try:
|
|
|
|
response_obj = None
|
|
completion_response = None
|
|
if mode == "chat":
|
|
# chat-bison etc.
|
|
chat = llm_model.start_chat()
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
response_obj = await chat.send_message_async(prompt, **optional_params)
|
|
completion_response = response_obj.text
|
|
elif mode == "text":
|
|
# gecko etc.
|
|
request_str += f"llm_model.predict({prompt}, **{optional_params}).text\n"
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
response_obj = await llm_model.predict_async(prompt, **optional_params)
|
|
completion_response = response_obj.text
|
|
elif mode == "custom":
|
|
"""
|
|
Vertex AI Model Garden
|
|
"""
|
|
from google.cloud import aiplatform # type: ignore
|
|
|
|
if vertex_project is None or vertex_location is None:
|
|
raise ValueError(
|
|
"Vertex project and location are required for custom endpoint"
|
|
)
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
|
|
llm_model = aiplatform.gapic.PredictionServiceAsyncClient(
|
|
client_options=client_options
|
|
)
|
|
request_str += f"llm_model = aiplatform.gapic.PredictionServiceAsyncClient(client_options={client_options})\n"
|
|
endpoint_path = llm_model.endpoint_path(
|
|
project=vertex_project, location=vertex_location, endpoint=model
|
|
)
|
|
request_str += (
|
|
f"llm_model.predict(endpoint={endpoint_path}, instances={instances})\n"
|
|
)
|
|
response_obj = await llm_model.predict(
|
|
endpoint=endpoint_path,
|
|
instances=instances,
|
|
)
|
|
response = response_obj.predictions
|
|
completion_response = response[0]
|
|
if (
|
|
isinstance(completion_response, str)
|
|
and "\nOutput:\n" in completion_response
|
|
):
|
|
completion_response = completion_response.split("\nOutput:\n", 1)[1]
|
|
|
|
elif mode == "private":
|
|
request_str += f"llm_model.predict_async(instances={instances})\n"
|
|
response_obj = await llm_model.predict_async(
|
|
instances=instances,
|
|
)
|
|
|
|
response = response_obj.predictions
|
|
completion_response = response[0]
|
|
if (
|
|
isinstance(completion_response, str)
|
|
and "\nOutput:\n" in completion_response
|
|
):
|
|
completion_response = completion_response.split("\nOutput:\n", 1)[1]
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=prompt, api_key=None, original_response=completion_response
|
|
)
|
|
|
|
## RESPONSE OBJECT
|
|
if isinstance(completion_response, litellm.Message):
|
|
model_response.choices[0].message = completion_response # type: ignore
|
|
elif len(str(completion_response)) > 0:
|
|
model_response.choices[0].message.content = str( # type: ignore
|
|
completion_response
|
|
)
|
|
model_response.created = int(time.time())
|
|
model_response.model = model
|
|
## CALCULATING USAGE
|
|
if model in litellm.vertex_language_models and response_obj is not None:
|
|
model_response.choices[0].finish_reason = map_finish_reason(
|
|
response_obj.candidates[0].finish_reason.name
|
|
)
|
|
usage = Usage(
|
|
prompt_tokens=response_obj.usage_metadata.prompt_token_count,
|
|
completion_tokens=response_obj.usage_metadata.candidates_token_count,
|
|
total_tokens=response_obj.usage_metadata.total_token_count,
|
|
)
|
|
else:
|
|
# init prompt tokens
|
|
# this block attempts to get usage from response_obj if it exists, if not it uses the litellm token counter
|
|
prompt_tokens, completion_tokens, _ = 0, 0, 0
|
|
if response_obj is not None and (
|
|
hasattr(response_obj, "usage_metadata")
|
|
and hasattr(response_obj.usage_metadata, "prompt_token_count")
|
|
):
|
|
prompt_tokens = response_obj.usage_metadata.prompt_token_count
|
|
completion_tokens = response_obj.usage_metadata.candidates_token_count
|
|
else:
|
|
prompt_tokens = len(encoding.encode(prompt))
|
|
completion_tokens = len(
|
|
encoding.encode(
|
|
model_response["choices"][0]["message"].get("content", "")
|
|
)
|
|
)
|
|
|
|
# set usage
|
|
usage = Usage(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens,
|
|
)
|
|
setattr(model_response, "usage", usage)
|
|
return model_response
|
|
except Exception as e:
|
|
raise VertexAIError(status_code=500, message=str(e))
|
|
|
|
|
|
async def async_streaming( # noqa: PLR0915
|
|
llm_model,
|
|
mode: str,
|
|
prompt: str,
|
|
model: str,
|
|
model_response: ModelResponse,
|
|
messages: list,
|
|
print_verbose: Callable,
|
|
logging_obj,
|
|
request_str: str,
|
|
encoding=None,
|
|
client_options=None,
|
|
instances=None,
|
|
vertex_project=None,
|
|
vertex_location=None,
|
|
safety_settings=None,
|
|
**optional_params,
|
|
):
|
|
"""
|
|
Add support for async streaming calls for gemini-pro
|
|
"""
|
|
response: Any = None
|
|
if mode == "chat":
|
|
chat = llm_model.start_chat()
|
|
optional_params.pop(
|
|
"stream", None
|
|
) # vertex ai raises an error when passing stream in optional params
|
|
request_str += (
|
|
f"chat.send_message_streaming_async({prompt}, **{optional_params})\n"
|
|
)
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
response = chat.send_message_streaming_async(prompt, **optional_params)
|
|
|
|
elif mode == "text":
|
|
optional_params.pop(
|
|
"stream", None
|
|
) # See note above on handling streaming for vertex ai
|
|
request_str += (
|
|
f"llm_model.predict_streaming_async({prompt}, **{optional_params})\n"
|
|
)
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
response = llm_model.predict_streaming_async(prompt, **optional_params)
|
|
elif mode == "custom":
|
|
from google.cloud import aiplatform # type: ignore
|
|
|
|
if vertex_project is None or vertex_location is None:
|
|
raise ValueError(
|
|
"Vertex project and location are required for custom endpoint"
|
|
)
|
|
|
|
stream = optional_params.pop("stream", None)
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=None,
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"request_str": request_str,
|
|
},
|
|
)
|
|
llm_model = aiplatform.gapic.PredictionServiceAsyncClient(
|
|
client_options=client_options
|
|
)
|
|
request_str += f"llm_model = aiplatform.gapic.PredictionServiceAsyncClient(client_options={client_options})\n"
|
|
endpoint_path = llm_model.endpoint_path(
|
|
project=vertex_project, location=vertex_location, endpoint=model
|
|
)
|
|
request_str += (
|
|
f"client.predict(endpoint={endpoint_path}, instances={instances})\n"
|
|
)
|
|
response_obj = await llm_model.predict(
|
|
endpoint=endpoint_path,
|
|
instances=instances,
|
|
)
|
|
|
|
response = response_obj.predictions
|
|
completion_response = response[0]
|
|
if (
|
|
isinstance(completion_response, str)
|
|
and "\nOutput:\n" in completion_response
|
|
):
|
|
completion_response = completion_response.split("\nOutput:\n", 1)[1]
|
|
if stream:
|
|
response = TextStreamer(completion_response)
|
|
|
|
elif mode == "private":
|
|
if instances is None:
|
|
raise ValueError("Instances are required for private endpoint")
|
|
stream = optional_params.pop("stream", None)
|
|
_ = instances[0].pop("stream", None)
|
|
request_str += f"llm_model.predict_async(instances={instances})\n"
|
|
response_obj = await llm_model.predict_async(
|
|
instances=instances,
|
|
)
|
|
response = response_obj.predictions
|
|
completion_response = response[0]
|
|
if (
|
|
isinstance(completion_response, str)
|
|
and "\nOutput:\n" in completion_response
|
|
):
|
|
completion_response = completion_response.split("\nOutput:\n", 1)[1]
|
|
if stream:
|
|
response = TextStreamer(completion_response)
|
|
|
|
if response is None:
|
|
raise ValueError("Unable to generate response")
|
|
|
|
logging_obj.post_call(input=prompt, api_key=None, original_response=response)
|
|
|
|
streamwrapper = CustomStreamWrapper(
|
|
completion_stream=response,
|
|
model=model,
|
|
custom_llm_provider="vertex_ai",
|
|
logging_obj=logging_obj,
|
|
)
|
|
|
|
return streamwrapper
|