litellm-mirror/litellm/llms/openai.py
2023-10-10 21:49:14 -07:00

273 lines
No EOL
12 KiB
Python

from typing import Optional, Union
import types, requests
from .base import BaseLLM
from litellm.utils import ModelResponse, Choices, Message
from typing import Callable, Optional
# This file just has the openai config classes.
# For implementation check out completion() in main.py
class CustomOpenAIError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class OpenAIConfig():
"""
Reference: https://platform.openai.com/docs/api-reference/chat/create
The class `OpenAIConfig` provides configuration for the OpenAI's Chat API interface. Below are the parameters:
- `frequency_penalty` (number or null): Defaults to 0. Allows a value between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, thereby minimizing repetition.
- `function_call` (string or object): This optional parameter controls how the model calls functions.
- `functions` (array): An optional parameter. It is a list of functions for which the model may generate JSON inputs.
- `logit_bias` (map): This optional parameter modifies the likelihood of specified tokens appearing in the completion.
- `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion.
- `n` (integer or null): This optional parameter helps to set how many chat completion choices to generate for each input message.
- `presence_penalty` (number or null): Defaults to 0. It penalizes new tokens based on if they appear in the text so far, hence increasing the model's likelihood to talk about new topics.
- `stop` (string / array / null): Specifies up to 4 sequences where the API will stop generating further tokens.
- `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2.
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling.
"""
frequency_penalty: Optional[int]=None
function_call: Optional[Union[str, dict]]=None
functions: Optional[list]=None
logit_bias: Optional[dict]=None
max_tokens: Optional[int]=None
n: Optional[int]=None
presence_penalty: Optional[int]=None
stop: Optional[Union[str, list]]=None
temperature: Optional[int]=None
top_p: Optional[int]=None
def __init__(self,
frequency_penalty: Optional[int]=None,
function_call: Optional[Union[str, dict]]=None,
functions: Optional[list]=None,
logit_bias: Optional[dict]=None,
max_tokens: Optional[int]=None,
n: Optional[int]=None,
presence_penalty: Optional[int]=None,
stop: Optional[Union[str, list]]=None,
temperature: Optional[int]=None,
top_p: Optional[int]=None,) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != 'self' and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {k: v for k, v in cls.__dict__.items()
if not k.startswith('__')
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
and v is not None}
class OpenAITextCompletionConfig():
"""
Reference: https://platform.openai.com/docs/api-reference/completions/create
The class `OpenAITextCompletionConfig` provides configuration for the OpenAI's text completion API interface. Below are the parameters:
- `best_of` (integer or null): This optional parameter generates server-side completions and returns the one with the highest log probability per token.
- `echo` (boolean or null): This optional parameter will echo back the prompt in addition to the completion.
- `frequency_penalty` (number or null): Defaults to 0. It is a numbers from -2.0 to 2.0, where positive values decrease the model's likelihood to repeat the same line.
- `logit_bias` (map): This optional parameter modifies the likelihood of specified tokens appearing in the completion.
- `logprobs` (integer or null): This optional parameter includes the log probabilities on the most likely tokens as well as the chosen tokens.
- `max_tokens` (integer or null): This optional parameter sets the maximum number of tokens to generate in the completion.
- `n` (integer or null): This optional parameter sets how many completions to generate for each prompt.
- `presence_penalty` (number or null): Defaults to 0 and can be between -2.0 and 2.0. Positive values increase the model's likelihood to talk about new topics.
- `stop` (string / array / null): Specifies up to 4 sequences where the API will stop generating further tokens.
- `suffix` (string or null): Defines the suffix that comes after a completion of inserted text.
- `temperature` (number or null): This optional parameter defines the sampling temperature to use.
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling.
"""
best_of: Optional[int]=None
echo: Optional[bool]=None
frequency_penalty: Optional[int]=None
logit_bias: Optional[dict]=None
logprobs: Optional[int]=None
max_tokens: Optional[int]=None
n: Optional[int]=None
presence_penalty: Optional[int]=None
stop: Optional[Union[str, list]]=None
suffix: Optional[str]=None
temperature: Optional[float]=None
top_p: Optional[float]=None
def __init__(self,
best_of: Optional[int]=None,
echo: Optional[bool]=None,
frequency_penalty: Optional[int]=None,
logit_bias: Optional[dict]=None,
logprobs: Optional[int]=None,
max_tokens: Optional[int]=None,
n: Optional[int]=None,
presence_penalty: Optional[int]=None,
stop: Optional[Union[str, list]]=None,
suffix: Optional[str]=None,
temperature: Optional[float]=None,
top_p: Optional[float]=None) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != 'self' and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {k: v for k, v in cls.__dict__.items()
if not k.startswith('__')
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
and v is not None}
class AzureOpenAIConfig(OpenAIConfig):
"""
Reference: https://platform.openai.com/docs/api-reference/chat/create
The class `AzureOpenAIConfig` provides configuration for the OpenAI's Chat API interface, for use with Azure. It inherits from `OpenAIConfig`. Below are the parameters::
- `frequency_penalty` (number or null): Defaults to 0. Allows a value between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, thereby minimizing repetition.
- `function_call` (string or object): This optional parameter controls how the model calls functions.
- `functions` (array): An optional parameter. It is a list of functions for which the model may generate JSON inputs.
- `logit_bias` (map): This optional parameter modifies the likelihood of specified tokens appearing in the completion.
- `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion.
- `n` (integer or null): This optional parameter helps to set how many chat completion choices to generate for each input message.
- `presence_penalty` (number or null): Defaults to 0. It penalizes new tokens based on if they appear in the text so far, hence increasing the model's likelihood to talk about new topics.
- `stop` (string / array / null): Specifies up to 4 sequences where the API will stop generating further tokens.
- `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2.
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling.
"""
def __init__(self,
frequency_penalty: Optional[int] = None,
function_call: Optional[Union[str, dict]]= None,
functions: Optional[list]= None,
logit_bias: Optional[dict]= None,
max_tokens: Optional[int]= None,
n: Optional[int]= None,
presence_penalty: Optional[int]= None,
stop: Optional[Union[str,list]]=None,
temperature: Optional[int]= None,
top_p: Optional[int]= None) -> None:
super().__init__(frequency_penalty,
function_call,
functions,
logit_bias,
max_tokens,
n,
presence_penalty,
stop,
temperature,
top_p)
class OpenAIChatCompletion(BaseLLM):
_client_session: requests.Session
def __init__(self) -> None:
super().__init__()
self._client_session = self.create_client_session()
def validate_environment(self, api_key):
headers = {
"content-type": "application/json",
}
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
return headers
def convert_to_model_response_object(self, response_object: dict, model_response_object: ModelResponse):
try:
choice_list=[]
for idx, choice in enumerate(response_object["choices"]):
message = Message(content=choice["message"]["content"], role=choice["message"]["role"])
choice = Choices(finish_reason=choice["finish_reason"], index=idx, message=message)
choice_list.append(choice)
model_response_object.choices = choice_list
if "usage" in response_object:
model_response_object.usage = response_object["usage"]
if "id" in response_object:
model_response_object.id = response_object["id"]
if "model" in response_object:
model_response_object.model = response_object["model"]
return model_response_object
except:
CustomOpenAIError(status_code=500, message="Invalid response object.")
def completion(self,
model: Optional[str]=None,
messages: Optional[list]=None,
model_response: Optional[ModelResponse]=None,
print_verbose: Optional[Callable]=None,
api_key: Optional[str]=None,
api_base: Optional[str]=None,
logging_obj=None,
optional_params=None,
litellm_params=None,
logger_fn=None):
super().completion()
headers = self.validate_environment(api_key=api_key)
data = {
"messages": messages,
**optional_params
}
if "stream" in optional_params and optional_params["stream"] == True:
response = self._client_session.post(
url=f"{api_base}/chat/completions",
json=data,
headers=headers,
stream=optional_params["stream"]
)
if response.status_code != 200:
raise CustomOpenAIError(status_code=response.status_code, message=response.text)
## RESPONSE OBJECT
return response.iter_lines()
else:
response = self._client_session.post(
url=f"{api_base}/chat/completions",
json=data,
headers=headers,
)
if response.status_code != 200:
raise CustomOpenAIError(status_code=response.status_code, message=response.text)
## RESPONSE OBJECT
return self.convert_to_model_response_object(response_object=response.json(), model_response_object=model_response)