mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
* fix(openai.py): ensure openai file object shows up on logs * fix(managed_files.py): return unified file id as b64 str allows retrieve file id to work as expected * fix(managed_files.py): apply decoded file id transformation * fix: add unit test for file id + decode logic * fix: initial commit for litellm_proxy support with CRUD Endpoints * fix(managed_files.py): support retrieve file operation * fix(managed_files.py): support for DELETE endpoint for files * fix(managed_files.py): retrieve file content support supports retrieve file content api from openai * fix: fix linting error * test: update tests * fix: fix linting error * feat(managed_files.py): support reading / writing files in DB * feat(managed_files.py): support deleting file from DB on delete * test: update testing * fix(spend_tracking_utils.py): ensure each file create request is logged correctly * fix(managed_files.py): fix storing / returning managed file object from cache * fix(files/main.py): pass litellm params to azure route * test: fix test * build: add new prisma migration * build: bump requirements * test: add more testing * refactor: cleanup post merge w/ main * fix: fix code qa errors
932 lines
30 KiB
Python
932 lines
30 KiB
Python
######################################################################
|
|
|
|
# /v1/files Endpoints
|
|
|
|
# Equivalent of https://platform.openai.com/docs/api-reference/files
|
|
######################################################################
|
|
|
|
import asyncio
|
|
import traceback
|
|
from typing import Optional, cast, get_args
|
|
|
|
import httpx
|
|
from fastapi import (
|
|
APIRouter,
|
|
Depends,
|
|
File,
|
|
Form,
|
|
HTTPException,
|
|
Request,
|
|
Response,
|
|
UploadFile,
|
|
status,
|
|
)
|
|
|
|
import litellm
|
|
from litellm import CreateFileRequest, get_secret_str
|
|
from litellm._logging import verbose_proxy_logger
|
|
from litellm.proxy._types import *
|
|
from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
|
|
from litellm.proxy.common_request_processing import ProxyBaseLLMRequestProcessing
|
|
from litellm.proxy.common_utils.openai_endpoint_utils import (
|
|
get_custom_llm_provider_from_request_body,
|
|
)
|
|
from litellm.proxy.hooks.managed_files import _PROXY_LiteLLMManagedFiles
|
|
from litellm.proxy.utils import ProxyLogging
|
|
from litellm.router import Router
|
|
from litellm.types.llms.openai import (
|
|
CREATE_FILE_REQUESTS_PURPOSE,
|
|
OpenAIFileObject,
|
|
OpenAIFilesPurpose,
|
|
)
|
|
|
|
router = APIRouter()
|
|
|
|
files_config = None
|
|
|
|
|
|
def set_files_config(config):
|
|
global files_config
|
|
if config is None:
|
|
return
|
|
|
|
if not isinstance(config, list):
|
|
raise ValueError("invalid files config, expected a list is not a list")
|
|
|
|
for element in config:
|
|
if isinstance(element, dict):
|
|
for key, value in element.items():
|
|
if isinstance(value, str) and value.startswith("os.environ/"):
|
|
element[key] = get_secret_str(value)
|
|
|
|
files_config = config
|
|
|
|
|
|
def get_files_provider_config(
|
|
custom_llm_provider: str,
|
|
):
|
|
global files_config
|
|
if custom_llm_provider == "vertex_ai":
|
|
return None
|
|
if files_config is None:
|
|
raise ValueError("files_settings is not set, set it on your config.yaml file.")
|
|
for setting in files_config:
|
|
if setting.get("custom_llm_provider") == custom_llm_provider:
|
|
return setting
|
|
return None
|
|
|
|
|
|
def get_first_json_object(file_content_bytes: bytes) -> Optional[dict]:
|
|
try:
|
|
# Decode the bytes to a string and split into lines
|
|
file_content = file_content_bytes.decode("utf-8")
|
|
first_line = file_content.splitlines()[0].strip()
|
|
|
|
# Parse the JSON object from the first line
|
|
json_object = json.loads(first_line)
|
|
return json_object
|
|
except (json.JSONDecodeError, UnicodeDecodeError):
|
|
return None
|
|
|
|
|
|
def get_model_from_json_obj(json_object: dict) -> Optional[str]:
|
|
body = json_object.get("body", {}) or {}
|
|
model = body.get("model")
|
|
|
|
return model
|
|
|
|
|
|
def is_known_model(model: Optional[str], llm_router: Optional[Router]) -> bool:
|
|
"""
|
|
Returns True if the model is in the llm_router model names
|
|
"""
|
|
if model is None or llm_router is None:
|
|
return False
|
|
model_names = llm_router.get_model_names()
|
|
|
|
is_in_list = False
|
|
if model in model_names:
|
|
is_in_list = True
|
|
|
|
return is_in_list
|
|
|
|
|
|
async def _deprecated_loadbalanced_create_file(
|
|
llm_router: Optional[Router],
|
|
router_model: str,
|
|
_create_file_request: CreateFileRequest,
|
|
) -> OpenAIFileObject:
|
|
if llm_router is None:
|
|
raise HTTPException(
|
|
status_code=500,
|
|
detail={
|
|
"error": "LLM Router not initialized. Ensure models added to proxy."
|
|
},
|
|
)
|
|
|
|
response = await llm_router.acreate_file(model=router_model, **_create_file_request)
|
|
return response
|
|
|
|
|
|
async def route_create_file(
|
|
llm_router: Optional[Router],
|
|
_create_file_request: CreateFileRequest,
|
|
purpose: OpenAIFilesPurpose,
|
|
proxy_logging_obj: ProxyLogging,
|
|
user_api_key_dict: UserAPIKeyAuth,
|
|
target_model_names_list: List[str],
|
|
is_router_model: bool,
|
|
router_model: Optional[str],
|
|
custom_llm_provider: str,
|
|
) -> OpenAIFileObject:
|
|
if (
|
|
litellm.enable_loadbalancing_on_batch_endpoints is True
|
|
and is_router_model
|
|
and router_model is not None
|
|
):
|
|
response = await _deprecated_loadbalanced_create_file(
|
|
llm_router=llm_router,
|
|
router_model=router_model,
|
|
_create_file_request=_create_file_request,
|
|
)
|
|
elif target_model_names_list:
|
|
managed_files_obj = cast(
|
|
Optional[_PROXY_LiteLLMManagedFiles],
|
|
proxy_logging_obj.get_proxy_hook("managed_files"),
|
|
)
|
|
if managed_files_obj is None:
|
|
raise ProxyException(
|
|
message="Managed files hook not found",
|
|
type="None",
|
|
param="None",
|
|
code=500,
|
|
)
|
|
if llm_router is None:
|
|
raise ProxyException(
|
|
message="LLM Router not found",
|
|
type="None",
|
|
param="None",
|
|
code=500,
|
|
)
|
|
response = await managed_files_obj.acreate_file(
|
|
llm_router=llm_router,
|
|
create_file_request=_create_file_request,
|
|
target_model_names_list=target_model_names_list,
|
|
litellm_parent_otel_span=user_api_key_dict.parent_otel_span,
|
|
)
|
|
else:
|
|
# get configs for custom_llm_provider
|
|
llm_provider_config = get_files_provider_config(
|
|
custom_llm_provider=custom_llm_provider
|
|
)
|
|
if llm_provider_config is not None:
|
|
# add llm_provider_config to data
|
|
_create_file_request.update(llm_provider_config)
|
|
_create_file_request.pop("custom_llm_provider", None) # type: ignore
|
|
# for now use custom_llm_provider=="openai" -> this will change as LiteLLM adds more providers for acreate_batch
|
|
response = await litellm.acreate_file(**_create_file_request, custom_llm_provider=custom_llm_provider) # type: ignore
|
|
|
|
return response
|
|
|
|
|
|
@router.post(
|
|
"/{provider}/v1/files",
|
|
dependencies=[Depends(user_api_key_auth)],
|
|
tags=["files"],
|
|
)
|
|
@router.post(
|
|
"/v1/files",
|
|
dependencies=[Depends(user_api_key_auth)],
|
|
tags=["files"],
|
|
)
|
|
@router.post(
|
|
"/files",
|
|
dependencies=[Depends(user_api_key_auth)],
|
|
tags=["files"],
|
|
)
|
|
async def create_file(
|
|
request: Request,
|
|
fastapi_response: Response,
|
|
purpose: str = Form(...),
|
|
target_model_names: str = Form(default=""),
|
|
provider: Optional[str] = None,
|
|
custom_llm_provider: str = Form(default="openai"),
|
|
file: UploadFile = File(...),
|
|
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
|
):
|
|
"""
|
|
Upload a file that can be used across - Assistants API, Batch API
|
|
This is the equivalent of POST https://api.openai.com/v1/files
|
|
|
|
Supports Identical Params as: https://platform.openai.com/docs/api-reference/files/create
|
|
|
|
Example Curl
|
|
```
|
|
curl http://localhost:4000/v1/files \
|
|
-H "Authorization: Bearer sk-1234" \
|
|
-F purpose="batch" \
|
|
-F file="@mydata.jsonl"
|
|
|
|
```
|
|
"""
|
|
from litellm.proxy.proxy_server import (
|
|
add_litellm_data_to_request,
|
|
general_settings,
|
|
llm_router,
|
|
proxy_config,
|
|
proxy_logging_obj,
|
|
version,
|
|
)
|
|
|
|
data: Dict = {}
|
|
try:
|
|
# Use orjson to parse JSON data, orjson speeds up requests significantly
|
|
# Read the file content
|
|
file_content = await file.read()
|
|
custom_llm_provider = (
|
|
provider
|
|
or await get_custom_llm_provider_from_request_body(request=request)
|
|
or "openai"
|
|
)
|
|
|
|
target_model_names_list = (
|
|
target_model_names.split(",") if target_model_names else []
|
|
)
|
|
target_model_names_list = [model.strip() for model in target_model_names_list]
|
|
# Prepare the data for forwarding
|
|
|
|
# Replace with:
|
|
valid_purposes = get_args(OpenAIFilesPurpose)
|
|
if purpose not in valid_purposes:
|
|
raise HTTPException(
|
|
status_code=400,
|
|
detail={
|
|
"error": f"Invalid purpose: {purpose}. Must be one of: {valid_purposes}",
|
|
},
|
|
)
|
|
# Cast purpose to OpenAIFilesPurpose type
|
|
purpose = cast(OpenAIFilesPurpose, purpose)
|
|
|
|
data = {}
|
|
|
|
# Include original request and headers in the data
|
|
data = await add_litellm_data_to_request(
|
|
data=data,
|
|
request=request,
|
|
general_settings=general_settings,
|
|
user_api_key_dict=user_api_key_dict,
|
|
version=version,
|
|
proxy_config=proxy_config,
|
|
)
|
|
|
|
# Prepare the file data according to FileTypes
|
|
file_data = (file.filename, file_content, file.content_type)
|
|
|
|
## check if model is a loadbalanced model
|
|
router_model: Optional[str] = None
|
|
is_router_model = False
|
|
if litellm.enable_loadbalancing_on_batch_endpoints is True:
|
|
json_obj = get_first_json_object(file_content_bytes=file_content)
|
|
if json_obj:
|
|
router_model = get_model_from_json_obj(json_object=json_obj)
|
|
is_router_model = is_known_model(
|
|
model=router_model, llm_router=llm_router
|
|
)
|
|
|
|
_create_file_request = CreateFileRequest(
|
|
file=file_data, purpose=cast(CREATE_FILE_REQUESTS_PURPOSE, purpose), **data
|
|
)
|
|
|
|
response = await route_create_file(
|
|
llm_router=llm_router,
|
|
_create_file_request=_create_file_request,
|
|
purpose=purpose,
|
|
proxy_logging_obj=proxy_logging_obj,
|
|
user_api_key_dict=user_api_key_dict,
|
|
target_model_names_list=target_model_names_list,
|
|
is_router_model=is_router_model,
|
|
router_model=router_model,
|
|
custom_llm_provider=custom_llm_provider,
|
|
)
|
|
|
|
if response is None:
|
|
raise HTTPException(
|
|
status_code=500,
|
|
detail={"error": "Failed to create file. Please try again."},
|
|
)
|
|
### ALERTING ###
|
|
asyncio.create_task(
|
|
proxy_logging_obj.update_request_status(
|
|
litellm_call_id=data.get("litellm_call_id", ""), status="success"
|
|
)
|
|
)
|
|
|
|
## POST CALL HOOKS ###
|
|
_response = await proxy_logging_obj.post_call_success_hook(
|
|
data=data, user_api_key_dict=user_api_key_dict, response=response
|
|
)
|
|
if _response is not None and isinstance(_response, OpenAIFileObject):
|
|
response = _response
|
|
|
|
### RESPONSE HEADERS ###
|
|
hidden_params = getattr(response, "_hidden_params", {}) or {}
|
|
model_id = hidden_params.get("model_id", None) or ""
|
|
cache_key = hidden_params.get("cache_key", None) or ""
|
|
api_base = hidden_params.get("api_base", None) or ""
|
|
|
|
fastapi_response.headers.update(
|
|
ProxyBaseLLMRequestProcessing.get_custom_headers(
|
|
user_api_key_dict=user_api_key_dict,
|
|
model_id=model_id,
|
|
cache_key=cache_key,
|
|
api_base=api_base,
|
|
version=version,
|
|
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
|
|
)
|
|
)
|
|
return response
|
|
except Exception as e:
|
|
await proxy_logging_obj.post_call_failure_hook(
|
|
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
|
|
)
|
|
verbose_proxy_logger.exception(
|
|
"litellm.proxy.proxy_server.create_file(): Exception occured - {}".format(
|
|
str(e)
|
|
)
|
|
)
|
|
if isinstance(e, HTTPException):
|
|
raise ProxyException(
|
|
message=getattr(e, "message", str(e.detail)),
|
|
type=getattr(e, "type", "None"),
|
|
param=getattr(e, "param", "None"),
|
|
code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
|
|
)
|
|
else:
|
|
error_msg = f"{str(e)}"
|
|
raise ProxyException(
|
|
message=getattr(e, "message", error_msg),
|
|
type=getattr(e, "type", "None"),
|
|
param=getattr(e, "param", "None"),
|
|
code=getattr(e, "status_code", 500),
|
|
)
|
|
|
|
|
|
@router.get(
|
|
"/{provider}/v1/files/{file_id:path}/content",
|
|
dependencies=[Depends(user_api_key_auth)],
|
|
tags=["files"],
|
|
)
|
|
@router.get(
|
|
"/v1/files/{file_id:path}/content",
|
|
dependencies=[Depends(user_api_key_auth)],
|
|
tags=["files"],
|
|
)
|
|
@router.get(
|
|
"/files/{file_id:path}/content",
|
|
dependencies=[Depends(user_api_key_auth)],
|
|
tags=["files"],
|
|
)
|
|
async def get_file_content(
|
|
request: Request,
|
|
fastapi_response: Response,
|
|
file_id: str,
|
|
provider: Optional[str] = None,
|
|
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
|
):
|
|
"""
|
|
Returns information about a specific file. that can be used across - Assistants API, Batch API
|
|
This is the equivalent of GET https://api.openai.com/v1/files/{file_id}/content
|
|
|
|
Supports Identical Params as: https://platform.openai.com/docs/api-reference/files/retrieve-contents
|
|
|
|
Example Curl
|
|
```
|
|
curl http://localhost:4000/v1/files/file-abc123/content \
|
|
-H "Authorization: Bearer sk-1234"
|
|
|
|
```
|
|
"""
|
|
from litellm.proxy.proxy_server import (
|
|
add_litellm_data_to_request,
|
|
general_settings,
|
|
llm_router,
|
|
proxy_config,
|
|
proxy_logging_obj,
|
|
version,
|
|
)
|
|
|
|
data: Dict = {}
|
|
try:
|
|
# Include original request and headers in the data
|
|
data = await add_litellm_data_to_request(
|
|
data=data,
|
|
request=request,
|
|
general_settings=general_settings,
|
|
user_api_key_dict=user_api_key_dict,
|
|
version=version,
|
|
proxy_config=proxy_config,
|
|
)
|
|
|
|
custom_llm_provider = (
|
|
provider
|
|
or await get_custom_llm_provider_from_request_body(request=request)
|
|
or "openai"
|
|
)
|
|
|
|
## check if file_id is a litellm managed file
|
|
is_base64_unified_file_id = (
|
|
_PROXY_LiteLLMManagedFiles._is_base64_encoded_unified_file_id(file_id)
|
|
)
|
|
if is_base64_unified_file_id:
|
|
managed_files_obj = cast(
|
|
Optional[_PROXY_LiteLLMManagedFiles],
|
|
proxy_logging_obj.get_proxy_hook("managed_files"),
|
|
)
|
|
if managed_files_obj is None:
|
|
raise ProxyException(
|
|
message="Managed files hook not found",
|
|
type="None",
|
|
param="None",
|
|
code=500,
|
|
)
|
|
if llm_router is None:
|
|
raise ProxyException(
|
|
message="LLM Router not found",
|
|
type="None",
|
|
param="None",
|
|
code=500,
|
|
)
|
|
response = await managed_files_obj.afile_content(
|
|
file_id=file_id,
|
|
litellm_parent_otel_span=user_api_key_dict.parent_otel_span,
|
|
llm_router=llm_router,
|
|
**data,
|
|
)
|
|
else:
|
|
response = await litellm.afile_content(
|
|
custom_llm_provider=custom_llm_provider, file_id=file_id, **data # type: ignore
|
|
)
|
|
|
|
### ALERTING ###
|
|
asyncio.create_task(
|
|
proxy_logging_obj.update_request_status(
|
|
litellm_call_id=data.get("litellm_call_id", ""), status="success"
|
|
)
|
|
)
|
|
|
|
### RESPONSE HEADERS ###
|
|
hidden_params = getattr(response, "_hidden_params", {}) or {}
|
|
model_id = hidden_params.get("model_id", None) or ""
|
|
cache_key = hidden_params.get("cache_key", None) or ""
|
|
api_base = hidden_params.get("api_base", None) or ""
|
|
|
|
fastapi_response.headers.update(
|
|
ProxyBaseLLMRequestProcessing.get_custom_headers(
|
|
user_api_key_dict=user_api_key_dict,
|
|
model_id=model_id,
|
|
cache_key=cache_key,
|
|
api_base=api_base,
|
|
version=version,
|
|
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
|
|
)
|
|
)
|
|
httpx_response: Optional[httpx.Response] = getattr(response, "response", None)
|
|
if httpx_response is None:
|
|
raise ValueError(
|
|
f"Invalid response - response.response is None - got {response}"
|
|
)
|
|
|
|
return Response(
|
|
content=httpx_response.content,
|
|
status_code=httpx_response.status_code,
|
|
headers=httpx_response.headers,
|
|
)
|
|
|
|
except Exception as e:
|
|
await proxy_logging_obj.post_call_failure_hook(
|
|
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
|
|
)
|
|
verbose_proxy_logger.error(
|
|
"litellm.proxy.proxy_server.retrieve_file_content(): Exception occured - {}".format(
|
|
str(e)
|
|
)
|
|
)
|
|
verbose_proxy_logger.debug(traceback.format_exc())
|
|
if isinstance(e, HTTPException):
|
|
raise ProxyException(
|
|
message=getattr(e, "message", str(e.detail)),
|
|
type=getattr(e, "type", "None"),
|
|
param=getattr(e, "param", "None"),
|
|
code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
|
|
)
|
|
else:
|
|
error_msg = f"{str(e)}"
|
|
raise ProxyException(
|
|
message=getattr(e, "message", error_msg),
|
|
type=getattr(e, "type", "None"),
|
|
param=getattr(e, "param", "None"),
|
|
code=getattr(e, "status_code", 500),
|
|
)
|
|
|
|
|
|
@router.get(
|
|
"/{provider}/v1/files/{file_id:path}",
|
|
dependencies=[Depends(user_api_key_auth)],
|
|
tags=["files"],
|
|
)
|
|
@router.get(
|
|
"/v1/files/{file_id:path}",
|
|
dependencies=[Depends(user_api_key_auth)],
|
|
tags=["files"],
|
|
)
|
|
@router.get(
|
|
"/files/{file_id:path}",
|
|
dependencies=[Depends(user_api_key_auth)],
|
|
tags=["files"],
|
|
)
|
|
async def get_file(
|
|
request: Request,
|
|
fastapi_response: Response,
|
|
file_id: str,
|
|
provider: Optional[str] = None,
|
|
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
|
):
|
|
"""
|
|
Returns information about a specific file. that can be used across - Assistants API, Batch API
|
|
This is the equivalent of GET https://api.openai.com/v1/files/{file_id}
|
|
|
|
Supports Identical Params as: https://platform.openai.com/docs/api-reference/files/retrieve
|
|
|
|
Example Curl
|
|
```
|
|
curl http://localhost:4000/v1/files/file-abc123 \
|
|
-H "Authorization: Bearer sk-1234"
|
|
|
|
```
|
|
"""
|
|
from litellm.proxy.proxy_server import (
|
|
add_litellm_data_to_request,
|
|
general_settings,
|
|
proxy_config,
|
|
proxy_logging_obj,
|
|
version,
|
|
)
|
|
|
|
data: Dict = {}
|
|
try:
|
|
custom_llm_provider = (
|
|
provider
|
|
or await get_custom_llm_provider_from_request_body(request=request)
|
|
or "openai"
|
|
)
|
|
# Include original request and headers in the data
|
|
data = await add_litellm_data_to_request(
|
|
data=data,
|
|
request=request,
|
|
general_settings=general_settings,
|
|
user_api_key_dict=user_api_key_dict,
|
|
version=version,
|
|
proxy_config=proxy_config,
|
|
)
|
|
|
|
## check if file_id is a litellm managed file
|
|
is_base64_unified_file_id = (
|
|
_PROXY_LiteLLMManagedFiles._is_base64_encoded_unified_file_id(file_id)
|
|
)
|
|
|
|
if is_base64_unified_file_id:
|
|
managed_files_obj = cast(
|
|
Optional[_PROXY_LiteLLMManagedFiles],
|
|
proxy_logging_obj.get_proxy_hook("managed_files"),
|
|
)
|
|
if managed_files_obj is None:
|
|
raise ProxyException(
|
|
message="Managed files hook not found",
|
|
type="None",
|
|
param="None",
|
|
code=500,
|
|
)
|
|
response = await managed_files_obj.afile_retrieve(
|
|
file_id=file_id,
|
|
litellm_parent_otel_span=user_api_key_dict.parent_otel_span,
|
|
)
|
|
else:
|
|
response = await litellm.afile_retrieve(
|
|
custom_llm_provider=custom_llm_provider, file_id=file_id, **data # type: ignore
|
|
)
|
|
|
|
### ALERTING ###
|
|
asyncio.create_task(
|
|
proxy_logging_obj.update_request_status(
|
|
litellm_call_id=data.get("litellm_call_id", ""), status="success"
|
|
)
|
|
)
|
|
|
|
### RESPONSE HEADERS ###
|
|
hidden_params = getattr(response, "_hidden_params", {}) or {}
|
|
model_id = hidden_params.get("model_id", None) or ""
|
|
cache_key = hidden_params.get("cache_key", None) or ""
|
|
api_base = hidden_params.get("api_base", None) or ""
|
|
|
|
fastapi_response.headers.update(
|
|
ProxyBaseLLMRequestProcessing.get_custom_headers(
|
|
user_api_key_dict=user_api_key_dict,
|
|
model_id=model_id,
|
|
cache_key=cache_key,
|
|
api_base=api_base,
|
|
version=version,
|
|
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
|
|
)
|
|
)
|
|
return response
|
|
|
|
except Exception as e:
|
|
await proxy_logging_obj.post_call_failure_hook(
|
|
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
|
|
)
|
|
verbose_proxy_logger.error(
|
|
"litellm.proxy.proxy_server.retrieve_file(): Exception occured - {}".format(
|
|
str(e)
|
|
)
|
|
)
|
|
verbose_proxy_logger.debug(traceback.format_exc())
|
|
if isinstance(e, HTTPException):
|
|
raise ProxyException(
|
|
message=getattr(e, "message", str(e.detail)),
|
|
type=getattr(e, "type", "None"),
|
|
param=getattr(e, "param", "None"),
|
|
code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
|
|
)
|
|
else:
|
|
error_msg = f"{str(e)}"
|
|
raise ProxyException(
|
|
message=getattr(e, "message", error_msg),
|
|
type=getattr(e, "type", "None"),
|
|
param=getattr(e, "param", "None"),
|
|
code=getattr(e, "status_code", 500),
|
|
)
|
|
|
|
|
|
@router.delete(
|
|
"/{provider}/v1/files/{file_id:path}",
|
|
dependencies=[Depends(user_api_key_auth)],
|
|
tags=["files"],
|
|
)
|
|
@router.delete(
|
|
"/v1/files/{file_id:path}",
|
|
dependencies=[Depends(user_api_key_auth)],
|
|
tags=["files"],
|
|
)
|
|
@router.delete(
|
|
"/files/{file_id:path}",
|
|
dependencies=[Depends(user_api_key_auth)],
|
|
tags=["files"],
|
|
)
|
|
async def delete_file(
|
|
request: Request,
|
|
fastapi_response: Response,
|
|
file_id: str,
|
|
provider: Optional[str] = None,
|
|
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
|
):
|
|
"""
|
|
Deletes a specified file. that can be used across - Assistants API, Batch API
|
|
This is the equivalent of DELETE https://api.openai.com/v1/files/{file_id}
|
|
|
|
Supports Identical Params as: https://platform.openai.com/docs/api-reference/files/delete
|
|
|
|
Example Curl
|
|
```
|
|
curl http://localhost:4000/v1/files/file-abc123 \
|
|
-X DELETE \
|
|
-H "Authorization: Bearer $OPENAI_API_KEY"
|
|
|
|
```
|
|
"""
|
|
from litellm.proxy.proxy_server import (
|
|
add_litellm_data_to_request,
|
|
general_settings,
|
|
llm_router,
|
|
proxy_config,
|
|
proxy_logging_obj,
|
|
version,
|
|
)
|
|
|
|
data: Dict = {}
|
|
try:
|
|
custom_llm_provider = (
|
|
provider
|
|
or await get_custom_llm_provider_from_request_body(request=request)
|
|
or "openai"
|
|
)
|
|
# Include original request and headers in the data
|
|
data = await add_litellm_data_to_request(
|
|
data=data,
|
|
request=request,
|
|
general_settings=general_settings,
|
|
user_api_key_dict=user_api_key_dict,
|
|
version=version,
|
|
proxy_config=proxy_config,
|
|
)
|
|
|
|
## check if file_id is a litellm managed file
|
|
is_base64_unified_file_id = (
|
|
_PROXY_LiteLLMManagedFiles._is_base64_encoded_unified_file_id(file_id)
|
|
)
|
|
|
|
if is_base64_unified_file_id:
|
|
managed_files_obj = cast(
|
|
Optional[_PROXY_LiteLLMManagedFiles],
|
|
proxy_logging_obj.get_proxy_hook("managed_files"),
|
|
)
|
|
if managed_files_obj is None:
|
|
raise ProxyException(
|
|
message="Managed files hook not found",
|
|
type="None",
|
|
param="None",
|
|
code=500,
|
|
)
|
|
if llm_router is None:
|
|
raise ProxyException(
|
|
message="LLM Router not found",
|
|
type="None",
|
|
param="None",
|
|
code=500,
|
|
)
|
|
response = await managed_files_obj.afile_delete(
|
|
file_id=file_id,
|
|
litellm_parent_otel_span=user_api_key_dict.parent_otel_span,
|
|
llm_router=llm_router,
|
|
**data,
|
|
)
|
|
else:
|
|
response = await litellm.afile_delete(
|
|
custom_llm_provider=custom_llm_provider, file_id=file_id, **data # type: ignore
|
|
)
|
|
|
|
### ALERTING ###
|
|
asyncio.create_task(
|
|
proxy_logging_obj.update_request_status(
|
|
litellm_call_id=data.get("litellm_call_id", ""), status="success"
|
|
)
|
|
)
|
|
|
|
### RESPONSE HEADERS ###
|
|
hidden_params = getattr(response, "_hidden_params", {}) or {}
|
|
model_id = hidden_params.get("model_id", None) or ""
|
|
cache_key = hidden_params.get("cache_key", None) or ""
|
|
api_base = hidden_params.get("api_base", None) or ""
|
|
|
|
fastapi_response.headers.update(
|
|
ProxyBaseLLMRequestProcessing.get_custom_headers(
|
|
user_api_key_dict=user_api_key_dict,
|
|
model_id=model_id,
|
|
cache_key=cache_key,
|
|
api_base=api_base,
|
|
version=version,
|
|
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
|
|
)
|
|
)
|
|
return response
|
|
|
|
except Exception as e:
|
|
await proxy_logging_obj.post_call_failure_hook(
|
|
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
|
|
)
|
|
verbose_proxy_logger.error(
|
|
"litellm.proxy.proxy_server.retrieve_file(): Exception occured - {}".format(
|
|
str(e)
|
|
)
|
|
)
|
|
verbose_proxy_logger.debug(traceback.format_exc())
|
|
if isinstance(e, HTTPException):
|
|
raise ProxyException(
|
|
message=getattr(e, "message", str(e.detail)),
|
|
type=getattr(e, "type", "None"),
|
|
param=getattr(e, "param", "None"),
|
|
code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
|
|
)
|
|
else:
|
|
error_msg = f"{str(e)}"
|
|
raise ProxyException(
|
|
message=getattr(e, "message", error_msg),
|
|
type=getattr(e, "type", "None"),
|
|
param=getattr(e, "param", "None"),
|
|
code=getattr(e, "status_code", 500),
|
|
)
|
|
|
|
|
|
@router.get(
|
|
"/{provider}/v1/files",
|
|
dependencies=[Depends(user_api_key_auth)],
|
|
tags=["files"],
|
|
)
|
|
@router.get(
|
|
"/v1/files",
|
|
dependencies=[Depends(user_api_key_auth)],
|
|
tags=["files"],
|
|
)
|
|
@router.get(
|
|
"/files",
|
|
dependencies=[Depends(user_api_key_auth)],
|
|
tags=["files"],
|
|
)
|
|
async def list_files(
|
|
request: Request,
|
|
fastapi_response: Response,
|
|
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
|
provider: Optional[str] = None,
|
|
purpose: Optional[str] = None,
|
|
):
|
|
"""
|
|
Returns information about a specific file. that can be used across - Assistants API, Batch API
|
|
This is the equivalent of GET https://api.openai.com/v1/files/
|
|
|
|
Supports Identical Params as: https://platform.openai.com/docs/api-reference/files/list
|
|
|
|
Example Curl
|
|
```
|
|
curl http://localhost:4000/v1/files\
|
|
-H "Authorization: Bearer sk-1234"
|
|
|
|
```
|
|
"""
|
|
from litellm.proxy.proxy_server import (
|
|
add_litellm_data_to_request,
|
|
general_settings,
|
|
proxy_config,
|
|
proxy_logging_obj,
|
|
version,
|
|
)
|
|
|
|
data: Dict = {}
|
|
try:
|
|
custom_llm_provider = (
|
|
provider
|
|
or await get_custom_llm_provider_from_request_body(request=request)
|
|
or "openai"
|
|
)
|
|
# Include original request and headers in the data
|
|
data = await add_litellm_data_to_request(
|
|
data=data,
|
|
request=request,
|
|
general_settings=general_settings,
|
|
user_api_key_dict=user_api_key_dict,
|
|
version=version,
|
|
proxy_config=proxy_config,
|
|
)
|
|
|
|
response = await litellm.afile_list(
|
|
custom_llm_provider=custom_llm_provider, purpose=purpose, **data # type: ignore
|
|
)
|
|
|
|
### ALERTING ###
|
|
asyncio.create_task(
|
|
proxy_logging_obj.update_request_status(
|
|
litellm_call_id=data.get("litellm_call_id", ""), status="success"
|
|
)
|
|
)
|
|
|
|
### RESPONSE HEADERS ###
|
|
hidden_params = getattr(response, "_hidden_params", {}) or {}
|
|
model_id = hidden_params.get("model_id", None) or ""
|
|
cache_key = hidden_params.get("cache_key", None) or ""
|
|
api_base = hidden_params.get("api_base", None) or ""
|
|
|
|
fastapi_response.headers.update(
|
|
ProxyBaseLLMRequestProcessing.get_custom_headers(
|
|
user_api_key_dict=user_api_key_dict,
|
|
model_id=model_id,
|
|
cache_key=cache_key,
|
|
api_base=api_base,
|
|
version=version,
|
|
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
|
|
)
|
|
)
|
|
return response
|
|
|
|
except Exception as e:
|
|
await proxy_logging_obj.post_call_failure_hook(
|
|
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
|
|
)
|
|
verbose_proxy_logger.error(
|
|
"litellm.proxy.proxy_server.list_files(): Exception occured - {}".format(
|
|
str(e)
|
|
)
|
|
)
|
|
verbose_proxy_logger.debug(traceback.format_exc())
|
|
if isinstance(e, HTTPException):
|
|
raise ProxyException(
|
|
message=getattr(e, "message", str(e.detail)),
|
|
type=getattr(e, "type", "None"),
|
|
param=getattr(e, "param", "None"),
|
|
code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
|
|
)
|
|
else:
|
|
error_msg = f"{str(e)}"
|
|
raise ProxyException(
|
|
message=getattr(e, "message", error_msg),
|
|
type=getattr(e, "type", "None"),
|
|
param=getattr(e, "param", "None"),
|
|
code=getattr(e, "status_code", 500),
|
|
)
|