mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
97 lines
3.3 KiB
Python
97 lines
3.3 KiB
Python
"""
|
|
This file contains common utils for anthropic calls.
|
|
"""
|
|
|
|
from typing import List, Optional, Union
|
|
|
|
import httpx
|
|
|
|
import litellm
|
|
from litellm.llms.base_llm.base_utils import BaseLLMModelInfo
|
|
from litellm.llms.base_llm.chat.transformation import BaseLLMException
|
|
from litellm.secret_managers.main import get_secret_str
|
|
|
|
|
|
class AnthropicError(BaseLLMException):
|
|
def __init__(
|
|
self,
|
|
status_code: int,
|
|
message,
|
|
headers: Optional[httpx.Headers] = None,
|
|
):
|
|
super().__init__(status_code=status_code, message=message, headers=headers)
|
|
|
|
|
|
class AnthropicModelInfo(BaseLLMModelInfo):
|
|
@staticmethod
|
|
def get_api_base(api_base: Optional[str] = None) -> Optional[str]:
|
|
return (
|
|
api_base
|
|
or get_secret_str("ANTHROPIC_API_BASE")
|
|
or "https://api.anthropic.com"
|
|
)
|
|
|
|
@staticmethod
|
|
def get_api_key(api_key: Optional[str] = None) -> Optional[str]:
|
|
return api_key or get_secret_str("ANTHROPIC_API_KEY")
|
|
|
|
@staticmethod
|
|
def get_base_model(model: Optional[str] = None) -> Optional[str]:
|
|
return model.replace("anthropic/", "") if model else None
|
|
|
|
def get_models(
|
|
self, api_key: Optional[str] = None, api_base: Optional[str] = None
|
|
) -> List[str]:
|
|
api_base = AnthropicModelInfo.get_api_base(api_base)
|
|
api_key = AnthropicModelInfo.get_api_key(api_key)
|
|
if api_base is None or api_key is None:
|
|
raise ValueError(
|
|
"ANTHROPIC_API_BASE or ANTHROPIC_API_KEY is not set. Please set the environment variable, to query Anthropic's `/models` endpoint."
|
|
)
|
|
response = litellm.module_level_client.get(
|
|
url=f"{api_base}/v1/models",
|
|
headers={"x-api-key": api_key, "anthropic-version": "2023-06-01"},
|
|
)
|
|
|
|
try:
|
|
response.raise_for_status()
|
|
except httpx.HTTPStatusError:
|
|
raise Exception(
|
|
f"Failed to fetch models from Anthropic. Status code: {response.status_code}, Response: {response.text}"
|
|
)
|
|
|
|
models = response.json()["data"]
|
|
|
|
litellm_model_names = []
|
|
for model in models:
|
|
stripped_model_name = model["id"]
|
|
litellm_model_name = "anthropic/" + stripped_model_name
|
|
litellm_model_names.append(litellm_model_name)
|
|
return litellm_model_names
|
|
|
|
|
|
def process_anthropic_headers(headers: Union[httpx.Headers, dict]) -> dict:
|
|
openai_headers = {}
|
|
if "anthropic-ratelimit-requests-limit" in headers:
|
|
openai_headers["x-ratelimit-limit-requests"] = headers[
|
|
"anthropic-ratelimit-requests-limit"
|
|
]
|
|
if "anthropic-ratelimit-requests-remaining" in headers:
|
|
openai_headers["x-ratelimit-remaining-requests"] = headers[
|
|
"anthropic-ratelimit-requests-remaining"
|
|
]
|
|
if "anthropic-ratelimit-tokens-limit" in headers:
|
|
openai_headers["x-ratelimit-limit-tokens"] = headers[
|
|
"anthropic-ratelimit-tokens-limit"
|
|
]
|
|
if "anthropic-ratelimit-tokens-remaining" in headers:
|
|
openai_headers["x-ratelimit-remaining-tokens"] = headers[
|
|
"anthropic-ratelimit-tokens-remaining"
|
|
]
|
|
|
|
llm_response_headers = {
|
|
"{}-{}".format("llm_provider", k): v for k, v in headers.items()
|
|
}
|
|
|
|
additional_headers = {**llm_response_headers, **openai_headers}
|
|
return additional_headers
|