litellm-mirror/litellm/llms/huggingface_restapi.py
2023-08-14 14:35:21 -07:00

94 lines
No EOL
4.6 KiB
Python

## Uses the huggingface text generation inference API
import os, json
from enum import Enum
import requests
from litellm import logging
import time
from typing import Callable
class HuggingfaceError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
super().__init__(self.message) # Call the base class constructor with the parameters it needs
class HuggingfaceRestAPILLM():
def __init__(self, encoding, api_key=None) -> None:
self.encoding = encoding
self.validate_environment(api_key=api_key)
def validate_environment(self, api_key): # set up the environment required to run the model
self.headers = {
"content-type": "application/json",
}
# get the api key if it exists in the environment or is passed in, but don't require it
self.api_key = os.getenv("HF_TOKEN") if "HF_TOKEN" in os.environ else api_key
if self.api_key != None:
self.headers["Authorization"] = f"Bearer {self.api_key}"
def completion(self, model: str, messages: list, custom_api_base: str, model_response: dict, print_verbose: Callable, optional_params=None, litellm_params=None, logger_fn=None): # logic for parsing in - calling - parsing out model completion calls
if custom_api_base:
completion_url = custom_api_base
elif "HF_API_BASE" in os.environ:
completion_url = os.getenv("HF_API_BASE")
else:
completion_url = f"https://api-inference.huggingface.co/models/{model}"
prompt = ""
if "meta-llama" in model and "chat" in model: # use the required special tokens for meta-llama - https://huggingface.co/blog/llama2#how-to-prompt-llama-2
prompt = "<s>"
for message in messages:
if message["role"] == "system":
prompt += "[INST] <<SYS>>" + message["content"]
elif message["role"] == "assistant":
prompt += message["content"] + "</s><s>[INST]"
elif message["role"] == "user":
prompt += message["content"] + "[/INST]"
else:
for message in messages:
prompt += f"{message['content']}"
### MAP INPUT PARAMS
# max tokens
if "max_tokens" in optional_params:
value = optional_params.pop("max_tokens")
optional_params["max_new_tokens"] = value
data = {
"inputs": prompt,
# "parameters": optional_params
}
## LOGGING
logging(model=model, input=prompt, additional_args={"litellm_params": litellm_params, "optional_params": optional_params}, logger_fn=logger_fn)
## COMPLETION CALL
response = requests.post(completion_url, headers=self.headers, data=json.dumps(data))
if "stream" in optional_params and optional_params["stream"] == True:
return response.iter_lines()
else:
## LOGGING
logging(model=model, input=prompt, additional_args={"litellm_params": litellm_params, "optional_params": optional_params, "original_response": response.text}, logger_fn=logger_fn)
print_verbose(f"raw model_response: {response.text}")
## RESPONSE OBJECT
completion_response = response.json()
print(f"response: {completion_response}")
if isinstance(completion_response, dict) and "error" in completion_response:
print(f"completion error: {completion_response['error']}")
print(f"response.status_code: {response.status_code}")
raise HuggingfaceError(message=completion_response["error"], status_code=response.status_code)
else:
model_response["choices"][0]["message"]["content"] = completion_response[0]["generated_text"]
## CALCULATING USAGE
prompt_tokens = len(self.encoding.encode(prompt)) ##[TODO] use the llama2 tokenizer here
completion_tokens = len(self.encoding.encode(model_response["choices"][0]["message"]["content"])) ##[TODO] use the llama2 tokenizer here
model_response["created"] = time.time()
model_response["model"] = model
model_response["usage"] = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
return model_response
pass
def embedding(): # logic for parsing in - calling - parsing out model embedding calls
pass