mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
* test: add initial e2e test * fix(vertex_ai/files): initial commit adding sync file create support * refactor: initial commit of vertex ai non-jsonl files reaching gcp endpoint * fix(vertex_ai/files/transformation.py): initial working commit of non-jsonl file call reaching backend endpoint * fix(vertex_ai/files/transformation.py): working e2e non-jsonl file upload * test: working e2e jsonl call * test: unit testing for jsonl file creation * fix(vertex_ai/transformation.py): reset file pointer after read allow multiple reads on same file object * fix: fix linting errors * fix: fix ruff linting errors * fix: fix import * fix: fix linting error * fix: fix linting error * fix(vertex_ai/files/transformation.py): fix linting error * test: update test * test: update tests * fix: fix linting errors * fix: fix test * fix: fix linting error
131 lines
3.5 KiB
Python
131 lines
3.5 KiB
Python
import json
|
|
from typing import Callable, Optional, Union
|
|
|
|
import litellm
|
|
from litellm.llms.custom_httpx.http_handler import (
|
|
AsyncHTTPHandler,
|
|
HTTPHandler,
|
|
_get_httpx_client,
|
|
)
|
|
from litellm.utils import ModelResponse
|
|
|
|
from .transformation import NLPCloudConfig
|
|
|
|
nlp_config = NLPCloudConfig()
|
|
|
|
|
|
def completion(
|
|
model: str,
|
|
messages: list,
|
|
api_base: str,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
api_key,
|
|
logging_obj,
|
|
optional_params: dict,
|
|
litellm_params: dict,
|
|
logger_fn=None,
|
|
default_max_tokens_to_sample=None,
|
|
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
|
|
headers={},
|
|
):
|
|
headers = nlp_config.validate_environment(
|
|
api_key=api_key,
|
|
headers=headers,
|
|
model=model,
|
|
messages=messages,
|
|
optional_params=optional_params,
|
|
litellm_params=litellm_params,
|
|
)
|
|
|
|
## Load Config
|
|
config = litellm.NLPCloudConfig.get_config()
|
|
for k, v in config.items():
|
|
if (
|
|
k not in optional_params
|
|
): # completion(top_k=3) > togetherai_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
optional_params[k] = v
|
|
|
|
completion_url_fragment_1 = api_base
|
|
completion_url_fragment_2 = "/generation"
|
|
model = model
|
|
|
|
completion_url = completion_url_fragment_1 + model + completion_url_fragment_2
|
|
data = nlp_config.transform_request(
|
|
model=model,
|
|
messages=messages,
|
|
optional_params=optional_params,
|
|
litellm_params=litellm_params,
|
|
headers=headers,
|
|
)
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=None,
|
|
api_key=api_key,
|
|
additional_args={
|
|
"complete_input_dict": data,
|
|
"headers": headers,
|
|
"api_base": completion_url,
|
|
},
|
|
)
|
|
## COMPLETION CALL
|
|
if client is None or not isinstance(client, HTTPHandler):
|
|
client = _get_httpx_client()
|
|
|
|
response = client.post(
|
|
completion_url,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
stream=optional_params["stream"] if "stream" in optional_params else False,
|
|
)
|
|
if "stream" in optional_params and optional_params["stream"] is True:
|
|
return clean_and_iterate_chunks(response)
|
|
else:
|
|
return nlp_config.transform_response(
|
|
model=model,
|
|
raw_response=response,
|
|
model_response=model_response,
|
|
logging_obj=logging_obj,
|
|
api_key=api_key,
|
|
request_data=data,
|
|
messages=messages,
|
|
optional_params=optional_params,
|
|
litellm_params=litellm_params,
|
|
encoding=encoding,
|
|
)
|
|
|
|
|
|
# def clean_and_iterate_chunks(response):
|
|
# def process_chunk(chunk):
|
|
# print(f"received chunk: {chunk}")
|
|
# cleaned_chunk = chunk.decode("utf-8")
|
|
# # Perform further processing based on your needs
|
|
# return cleaned_chunk
|
|
|
|
|
|
# for line in response.iter_lines():
|
|
# if line:
|
|
# yield process_chunk(line)
|
|
def clean_and_iterate_chunks(response):
|
|
buffer = b""
|
|
|
|
for chunk in response.iter_content(chunk_size=1024):
|
|
if not chunk:
|
|
break
|
|
|
|
buffer += chunk
|
|
while b"\x00" in buffer:
|
|
buffer = buffer.replace(b"\x00", b"")
|
|
yield buffer.decode("utf-8")
|
|
buffer = b""
|
|
|
|
# No more data expected, yield any remaining data in the buffer
|
|
if buffer:
|
|
yield buffer.decode("utf-8")
|
|
|
|
|
|
def embedding():
|
|
# logic for parsing in - calling - parsing out model embedding calls
|
|
pass
|