litellm-mirror/litellm/integrations/langsmith.py
Krrish Dholakia 6cca5612d2 refactor: replace 'traceback.print_exc()' with logging library
allows error logs to be in json format for otel logging
2024-06-06 13:47:43 -07:00

110 lines
4.4 KiB
Python

#### What this does ####
# On success, logs events to Langsmith
import dotenv, os # type: ignore
import requests # type: ignore
from datetime import datetime
import traceback
import asyncio
import types
from pydantic import BaseModel # type: ignore
def is_serializable(value):
non_serializable_types = (
types.CoroutineType,
types.FunctionType,
types.GeneratorType,
BaseModel,
)
return not isinstance(value, non_serializable_types)
class LangsmithLogger:
# Class variables or attributes
def __init__(self):
self.langsmith_api_key = os.getenv("LANGSMITH_API_KEY")
self.langsmith_project = os.getenv("LANGSMITH_PROJECT", "litellm-completion")
self.langsmith_default_run_name = os.getenv(
"LANGSMITH_DEFAULT_RUN_NAME", "LLMRun"
)
def log_event(self, kwargs, response_obj, start_time, end_time, print_verbose):
# Method definition
# inspired by Langsmith http api here: https://github.com/langchain-ai/langsmith-cookbook/blob/main/tracing-examples/rest/rest.ipynb
metadata = (
kwargs.get("litellm_params", {}).get("metadata", {}) or {}
) # if metadata is None
# set project name and run_name for langsmith logging
# users can pass project_name and run name to litellm.completion()
# Example: litellm.completion(model, messages, metadata={"project_name": "my-litellm-project", "run_name": "my-langsmith-run"})
# if not set litellm will fallback to the environment variable LANGSMITH_PROJECT, then to the default project_name = litellm-completion, run_name = LLMRun
project_name = metadata.get("project_name", self.langsmith_project)
run_name = metadata.get("run_name", self.langsmith_default_run_name)
print_verbose(
f"Langsmith Logging - project_name: {project_name}, run_name {run_name}"
)
langsmith_base_url = os.getenv(
"LANGSMITH_BASE_URL", "https://api.smith.langchain.com"
)
try:
print_verbose(
f"Langsmith Logging - Enters logging function for model {kwargs}"
)
import requests
import datetime
from datetime import timezone
try:
start_time = kwargs["start_time"].astimezone(timezone.utc).isoformat()
end_time = kwargs["end_time"].astimezone(timezone.utc).isoformat()
except:
start_time = datetime.datetime.utcnow().isoformat()
end_time = datetime.datetime.utcnow().isoformat()
# filter out kwargs to not include any dicts, langsmith throws an erros when trying to log kwargs
new_kwargs = {}
for key in kwargs:
value = kwargs[key]
if key == "start_time" or key == "end_time" or value is None:
pass
elif type(value) == datetime.datetime:
new_kwargs[key] = value.isoformat()
elif type(value) != dict and is_serializable(value=value):
new_kwargs[key] = value
if isinstance(response_obj, BaseModel):
try:
response_obj = response_obj.model_dump()
except:
response_obj = response_obj.dict() # type: ignore
data = {
"name": run_name,
"run_type": "llm", # this should always be llm, since litellm always logs llm calls. Langsmith allow us to log "chain"
"inputs": new_kwargs,
"outputs": response_obj,
"session_name": project_name,
"start_time": start_time,
"end_time": end_time,
}
url = f"{langsmith_base_url}/runs"
print_verbose(f"Langsmith Logging - About to send data to {url} ...")
response = requests.post(
url=url,
json=data,
headers={"x-api-key": self.langsmith_api_key},
)
if response.status_code >= 300:
print_verbose(f"Error: {response.status_code}")
else:
print_verbose("Run successfully created")
print_verbose(
f"Langsmith Layer Logging - final response object: {response_obj}"
)
except:
print_verbose(f"Langsmith Layer Error - {traceback.format_exc()}")
pass