litellm-mirror/litellm/llms/ollama_chat.py
Krrish Dholakia 6cca5612d2 refactor: replace 'traceback.print_exc()' with logging library
allows error logs to be in json format for otel logging
2024-06-06 13:47:43 -07:00

539 lines
21 KiB
Python

from itertools import chain
import requests
import types
import time
import json
import uuid
import traceback
from typing import Optional
from litellm import verbose_logger
import litellm
import httpx
import aiohttp
class OllamaError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
self.request = httpx.Request(method="POST", url="http://localhost:11434")
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class OllamaChatConfig:
"""
Reference: https://github.com/ollama/ollama/blob/main/docs/api.md#parameters
The class `OllamaConfig` provides the configuration for the Ollama's API interface. Below are the parameters:
- `mirostat` (int): Enable Mirostat sampling for controlling perplexity. Default is 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0. Example usage: mirostat 0
- `mirostat_eta` (float): Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. Default: 0.1. Example usage: mirostat_eta 0.1
- `mirostat_tau` (float): Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. Default: 5.0. Example usage: mirostat_tau 5.0
- `num_ctx` (int): Sets the size of the context window used to generate the next token. Default: 2048. Example usage: num_ctx 4096
- `num_gqa` (int): The number of GQA groups in the transformer layer. Required for some models, for example it is 8 for llama2:70b. Example usage: num_gqa 1
- `num_gpu` (int): The number of layers to send to the GPU(s). On macOS it defaults to 1 to enable metal support, 0 to disable. Example usage: num_gpu 0
- `num_thread` (int): Sets the number of threads to use during computation. By default, Ollama will detect this for optimal performance. It is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores). Example usage: num_thread 8
- `repeat_last_n` (int): Sets how far back for the model to look back to prevent repetition. Default: 64, 0 = disabled, -1 = num_ctx. Example usage: repeat_last_n 64
- `repeat_penalty` (float): Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. Default: 1.1. Example usage: repeat_penalty 1.1
- `temperature` (float): The temperature of the model. Increasing the temperature will make the model answer more creatively. Default: 0.8. Example usage: temperature 0.7
- `seed` (int): Sets the random number seed to use for generation. Setting this to a specific number will make the model generate the same text for the same prompt. Example usage: seed 42
- `stop` (string[]): Sets the stop sequences to use. Example usage: stop "AI assistant:"
- `tfs_z` (float): Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. Default: 1. Example usage: tfs_z 1
- `num_predict` (int): Maximum number of tokens to predict when generating text. Default: 128, -1 = infinite generation, -2 = fill context. Example usage: num_predict 42
- `top_k` (int): Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. Default: 40. Example usage: top_k 40
- `top_p` (float): Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. Default: 0.9. Example usage: top_p 0.9
- `system` (string): system prompt for model (overrides what is defined in the Modelfile)
- `template` (string): the full prompt or prompt template (overrides what is defined in the Modelfile)
"""
mirostat: Optional[int] = None
mirostat_eta: Optional[float] = None
mirostat_tau: Optional[float] = None
num_ctx: Optional[int] = None
num_gqa: Optional[int] = None
num_thread: Optional[int] = None
repeat_last_n: Optional[int] = None
repeat_penalty: Optional[float] = None
temperature: Optional[float] = None
seed: Optional[int] = None
stop: Optional[list] = (
None # stop is a list based on this - https://github.com/ollama/ollama/pull/442
)
tfs_z: Optional[float] = None
num_predict: Optional[int] = None
top_k: Optional[int] = None
top_p: Optional[float] = None
system: Optional[str] = None
template: Optional[str] = None
def __init__(
self,
mirostat: Optional[int] = None,
mirostat_eta: Optional[float] = None,
mirostat_tau: Optional[float] = None,
num_ctx: Optional[int] = None,
num_gqa: Optional[int] = None,
num_thread: Optional[int] = None,
repeat_last_n: Optional[int] = None,
repeat_penalty: Optional[float] = None,
temperature: Optional[float] = None,
seed: Optional[int] = None,
stop: Optional[list] = None,
tfs_z: Optional[float] = None,
num_predict: Optional[int] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
system: Optional[str] = None,
template: Optional[str] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and k != "function_name" # special param for function calling
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def get_supported_openai_params(
self,
):
return [
"max_tokens",
"stream",
"top_p",
"temperature",
"seed",
"frequency_penalty",
"stop",
"tools",
"tool_choice",
"functions",
"response_format",
]
def map_openai_params(self, non_default_params: dict, optional_params: dict):
for param, value in non_default_params.items():
if param == "max_tokens":
optional_params["num_predict"] = value
if param == "stream":
optional_params["stream"] = value
if param == "temperature":
optional_params["temperature"] = value
if param == "seed":
optional_params["seed"] = value
if param == "top_p":
optional_params["top_p"] = value
if param == "frequency_penalty":
optional_params["repeat_penalty"] = value
if param == "stop":
optional_params["stop"] = value
if param == "response_format" and value["type"] == "json_object":
optional_params["format"] = "json"
### FUNCTION CALLING LOGIC ###
if param == "tools":
# ollama actually supports json output
optional_params["format"] = "json"
litellm.add_function_to_prompt = (
True # so that main.py adds the function call to the prompt
)
optional_params["functions_unsupported_model"] = value
if len(optional_params["functions_unsupported_model"]) == 1:
optional_params["function_name"] = optional_params[
"functions_unsupported_model"
][0]["function"]["name"]
if param == "functions":
# ollama actually supports json output
optional_params["format"] = "json"
litellm.add_function_to_prompt = (
True # so that main.py adds the function call to the prompt
)
optional_params["functions_unsupported_model"] = non_default_params.get(
"functions"
)
non_default_params.pop("tool_choice", None) # causes ollama requests to hang
non_default_params.pop("functions", None) # causes ollama requests to hang
return optional_params
# ollama implementation
def get_ollama_response(
api_base="http://localhost:11434",
api_key: Optional[str] = None,
model="llama2",
messages=None,
optional_params=None,
logging_obj=None,
acompletion: bool = False,
model_response=None,
encoding=None,
):
if api_base.endswith("/api/chat"):
url = api_base
else:
url = f"{api_base}/api/chat"
## Load Config
config = litellm.OllamaChatConfig.get_config()
for k, v in config.items():
if (
k not in optional_params
): # completion(top_k=3) > cohere_config(top_k=3) <- allows for dynamic variables to be passed in
optional_params[k] = v
stream = optional_params.pop("stream", False)
format = optional_params.pop("format", None)
function_name = optional_params.pop("function_name", None)
for m in messages:
if "role" in m and m["role"] == "tool":
m["role"] = "assistant"
data = {
"model": model,
"messages": messages,
"options": optional_params,
"stream": stream,
}
if format is not None:
data["format"] = format
## LOGGING
logging_obj.pre_call(
input=None,
api_key=None,
additional_args={
"api_base": url,
"complete_input_dict": data,
"headers": {},
"acompletion": acompletion,
},
)
if acompletion is True:
if stream == True:
response = ollama_async_streaming(
url=url,
api_key=api_key,
data=data,
model_response=model_response,
encoding=encoding,
logging_obj=logging_obj,
)
else:
response = ollama_acompletion(
url=url,
api_key=api_key,
data=data,
model_response=model_response,
encoding=encoding,
logging_obj=logging_obj,
function_name=function_name,
)
return response
elif stream == True:
return ollama_completion_stream(
url=url, api_key=api_key, data=data, logging_obj=logging_obj
)
_request = {
"url": f"{url}",
"json": data,
}
if api_key is not None:
_request["headers"] = "Bearer {}".format(api_key)
response = requests.post(**_request) # type: ignore
if response.status_code != 200:
raise OllamaError(status_code=response.status_code, message=response.text)
## LOGGING
logging_obj.post_call(
input=messages,
api_key="",
original_response=response.text,
additional_args={
"headers": None,
"api_base": api_base,
},
)
response_json = response.json()
## RESPONSE OBJECT
model_response["choices"][0]["finish_reason"] = "stop"
if data.get("format", "") == "json":
function_call = json.loads(response_json["message"]["content"])
message = litellm.Message(
content=None,
tool_calls=[
{
"id": f"call_{str(uuid.uuid4())}",
"function": {
"name": function_call["name"],
"arguments": json.dumps(function_call["arguments"]),
},
"type": "function",
}
],
)
model_response["choices"][0]["message"] = message
model_response["choices"][0]["finish_reason"] = "tool_calls"
else:
model_response["choices"][0]["message"]["content"] = response_json["message"][
"content"
]
model_response["created"] = int(time.time())
model_response["model"] = "ollama/" + model
prompt_tokens = response_json.get("prompt_eval_count", litellm.token_counter(messages=messages)) # type: ignore
completion_tokens = response_json.get(
"eval_count", litellm.token_counter(text=response_json["message"]["content"])
)
model_response["usage"] = litellm.Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
return model_response
def ollama_completion_stream(url, api_key, data, logging_obj):
_request = {
"url": f"{url}",
"json": data,
"method": "POST",
"timeout": litellm.request_timeout,
}
if api_key is not None:
_request["headers"] = "Bearer {}".format(api_key)
with httpx.stream(**_request) as response:
try:
if response.status_code != 200:
raise OllamaError(
status_code=response.status_code, message=response.iter_lines()
)
streamwrapper = litellm.CustomStreamWrapper(
completion_stream=response.iter_lines(),
model=data["model"],
custom_llm_provider="ollama_chat",
logging_obj=logging_obj,
)
# If format is JSON, this was a function call
# Gather all chunks and return the function call as one delta to simplify parsing
if data.get("format", "") == "json":
first_chunk = next(streamwrapper)
response_content = "".join(
chunk.choices[0].delta.content
for chunk in chain([first_chunk], streamwrapper)
if chunk.choices[0].delta.content
)
function_call = json.loads(response_content)
delta = litellm.utils.Delta(
content=None,
tool_calls=[
{
"id": f"call_{str(uuid.uuid4())}",
"function": {
"name": function_call["name"],
"arguments": json.dumps(function_call["arguments"]),
},
"type": "function",
}
],
)
model_response = first_chunk
model_response["choices"][0]["delta"] = delta
model_response["choices"][0]["finish_reason"] = "tool_calls"
yield model_response
else:
for transformed_chunk in streamwrapper:
yield transformed_chunk
except Exception as e:
raise e
async def ollama_async_streaming(
url, api_key, data, model_response, encoding, logging_obj
):
try:
client = httpx.AsyncClient()
_request = {
"url": f"{url}",
"json": data,
"method": "POST",
"timeout": litellm.request_timeout,
}
if api_key is not None:
_request["headers"] = "Bearer {}".format(api_key)
async with client.stream(**_request) as response:
if response.status_code != 200:
raise OllamaError(
status_code=response.status_code, message=response.text
)
streamwrapper = litellm.CustomStreamWrapper(
completion_stream=response.aiter_lines(),
model=data["model"],
custom_llm_provider="ollama_chat",
logging_obj=logging_obj,
)
# If format is JSON, this was a function call
# Gather all chunks and return the function call as one delta to simplify parsing
if data.get("format", "") == "json":
first_chunk = await anext(streamwrapper)
first_chunk_content = first_chunk.choices[0].delta.content or ""
response_content = first_chunk_content + "".join(
[
chunk.choices[0].delta.content
async for chunk in streamwrapper
if chunk.choices[0].delta.content
]
)
function_call = json.loads(response_content)
delta = litellm.utils.Delta(
content=None,
tool_calls=[
{
"id": f"call_{str(uuid.uuid4())}",
"function": {
"name": function_call["name"],
"arguments": json.dumps(function_call["arguments"]),
},
"type": "function",
}
],
)
model_response = first_chunk
model_response["choices"][0]["delta"] = delta
model_response["choices"][0]["finish_reason"] = "tool_calls"
yield model_response
else:
async for transformed_chunk in streamwrapper:
yield transformed_chunk
except Exception as e:
verbose_logger.error("LiteLLM.gemini(): Exception occured - {}".format(str(e)))
verbose_logger.debug(traceback.format_exc())
async def ollama_acompletion(
url,
api_key: Optional[str],
data,
model_response,
encoding,
logging_obj,
function_name,
):
data["stream"] = False
try:
timeout = aiohttp.ClientTimeout(total=litellm.request_timeout) # 10 minutes
async with aiohttp.ClientSession(timeout=timeout) as session:
_request = {
"url": f"{url}",
"json": data,
}
if api_key is not None:
_request["headers"] = "Bearer {}".format(api_key)
resp = await session.post(**_request)
if resp.status != 200:
text = await resp.text()
raise OllamaError(status_code=resp.status, message=text)
response_json = await resp.json()
## LOGGING
logging_obj.post_call(
input=data,
api_key="",
original_response=response_json,
additional_args={
"headers": None,
"api_base": url,
},
)
## RESPONSE OBJECT
model_response["choices"][0]["finish_reason"] = "stop"
if data.get("format", "") == "json":
function_call = json.loads(response_json["message"]["content"])
message = litellm.Message(
content=None,
tool_calls=[
{
"id": f"call_{str(uuid.uuid4())}",
"function": {
"name": function_call["name"],
"arguments": json.dumps(function_call["arguments"]),
},
"type": "function",
}
],
)
model_response["choices"][0]["message"] = message
model_response["choices"][0]["finish_reason"] = "tool_calls"
else:
model_response["choices"][0]["message"]["content"] = response_json[
"message"
]["content"]
model_response["created"] = int(time.time())
model_response["model"] = "ollama_chat/" + data["model"]
prompt_tokens = response_json.get("prompt_eval_count", litellm.token_counter(messages=data["messages"])) # type: ignore
completion_tokens = response_json.get(
"eval_count",
litellm.token_counter(
text=response_json["message"]["content"], count_response_tokens=True
),
)
model_response["usage"] = litellm.Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
return model_response
except Exception as e:
verbose_logger.error(
"LiteLLM.ollama_acompletion(): Exception occured - {}".format(str(e))
)
verbose_logger.debug(traceback.format_exc())
raise e