mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 19:24:27 +00:00
Closes https://github.com/BerriAI/litellm/pull/6978 - handles content as list for dbrx, - handles streaming+response_format for dbrx
611 lines
21 KiB
Python
611 lines
21 KiB
Python
# What is this?
|
|
## Handler file for databricks API https://docs.databricks.com/en/machine-learning/foundation-models/api-reference.html#chat-request
|
|
import copy
|
|
import json
|
|
import os
|
|
import time
|
|
import types
|
|
from enum import Enum
|
|
from functools import partial
|
|
from typing import Any, Callable, List, Literal, Optional, Tuple, Union
|
|
|
|
import httpx # type: ignore
|
|
import requests # type: ignore
|
|
|
|
import litellm
|
|
from litellm import LlmProviders
|
|
from litellm.litellm_core_utils.core_helpers import map_finish_reason
|
|
from litellm.llms.custom_httpx.http_handler import (
|
|
AsyncHTTPHandler,
|
|
HTTPHandler,
|
|
get_async_httpx_client,
|
|
)
|
|
from litellm.llms.databricks.exceptions import DatabricksError
|
|
from litellm.llms.databricks.streaming_utils import ModelResponseIterator
|
|
from litellm.types.llms.openai import (
|
|
ChatCompletionDeltaChunk,
|
|
ChatCompletionResponseMessage,
|
|
ChatCompletionToolCallChunk,
|
|
ChatCompletionToolCallFunctionChunk,
|
|
ChatCompletionUsageBlock,
|
|
)
|
|
from litellm.types.utils import (
|
|
CustomStreamingDecoder,
|
|
GenericStreamingChunk,
|
|
ProviderField,
|
|
)
|
|
from litellm.utils import (
|
|
CustomStreamWrapper,
|
|
EmbeddingResponse,
|
|
ModelResponse,
|
|
ProviderConfigManager,
|
|
Usage,
|
|
)
|
|
|
|
from ...base import BaseLLM
|
|
from ...prompt_templates.factory import custom_prompt, prompt_factory
|
|
from .transformation import DatabricksConfig
|
|
|
|
|
|
async def make_call(
|
|
client: Optional[AsyncHTTPHandler],
|
|
api_base: str,
|
|
headers: dict,
|
|
data: str,
|
|
model: str,
|
|
messages: list,
|
|
logging_obj,
|
|
streaming_decoder: Optional[CustomStreamingDecoder] = None,
|
|
):
|
|
if client is None:
|
|
client = get_async_httpx_client(
|
|
llm_provider=litellm.LlmProviders.DATABRICKS
|
|
) # Create a new client if none provided
|
|
response = await client.post(api_base, headers=headers, data=data, stream=True)
|
|
|
|
if response.status_code != 200:
|
|
raise DatabricksError(status_code=response.status_code, message=response.text)
|
|
|
|
if streaming_decoder is not None:
|
|
completion_stream: Any = streaming_decoder.aiter_bytes(
|
|
response.aiter_bytes(chunk_size=1024)
|
|
)
|
|
else:
|
|
completion_stream = ModelResponseIterator(
|
|
streaming_response=response.aiter_lines(), sync_stream=False
|
|
)
|
|
# LOGGING
|
|
logging_obj.post_call(
|
|
input=messages,
|
|
api_key="",
|
|
original_response=completion_stream, # Pass the completion stream for logging
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
|
|
return completion_stream
|
|
|
|
|
|
def make_sync_call(
|
|
client: Optional[HTTPHandler],
|
|
api_base: str,
|
|
headers: dict,
|
|
data: str,
|
|
model: str,
|
|
messages: list,
|
|
logging_obj,
|
|
streaming_decoder: Optional[CustomStreamingDecoder] = None,
|
|
):
|
|
if client is None:
|
|
client = litellm.module_level_client # Create a new client if none provided
|
|
|
|
response = client.post(api_base, headers=headers, data=data, stream=True)
|
|
|
|
if response.status_code != 200:
|
|
raise DatabricksError(status_code=response.status_code, message=response.read())
|
|
|
|
if streaming_decoder is not None:
|
|
completion_stream = streaming_decoder.iter_bytes(
|
|
response.iter_bytes(chunk_size=1024)
|
|
)
|
|
else:
|
|
completion_stream = ModelResponseIterator(
|
|
streaming_response=response.iter_lines(), sync_stream=True
|
|
)
|
|
|
|
# LOGGING
|
|
logging_obj.post_call(
|
|
input=messages,
|
|
api_key="",
|
|
original_response="first stream response received",
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
|
|
return completion_stream
|
|
|
|
|
|
class DatabricksChatCompletion(BaseLLM):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
# makes headers for API call
|
|
def _get_databricks_credentials(
|
|
self, api_key: Optional[str], api_base: Optional[str], headers: Optional[dict]
|
|
) -> Tuple[str, dict]:
|
|
headers = headers or {"Content-Type": "application/json"}
|
|
try:
|
|
from databricks.sdk import WorkspaceClient
|
|
|
|
databricks_client = WorkspaceClient()
|
|
api_base = api_base or f"{databricks_client.config.host}/serving-endpoints"
|
|
|
|
if api_key is None:
|
|
databricks_auth_headers: dict[str, str] = (
|
|
databricks_client.config.authenticate()
|
|
)
|
|
headers = {**databricks_auth_headers, **headers}
|
|
|
|
return api_base, headers
|
|
except ImportError:
|
|
raise DatabricksError(
|
|
status_code=400,
|
|
message=(
|
|
"If the Databricks base URL and API key are not set, the databricks-sdk "
|
|
"Python library must be installed. Please install the databricks-sdk, set "
|
|
"{LLM_PROVIDER}_API_BASE and {LLM_PROVIDER}_API_KEY environment variables, "
|
|
"or provide the base URL and API key as arguments."
|
|
),
|
|
)
|
|
|
|
def _validate_environment(
|
|
self,
|
|
api_key: Optional[str],
|
|
api_base: Optional[str],
|
|
endpoint_type: Literal["chat_completions", "embeddings"],
|
|
custom_endpoint: Optional[bool],
|
|
headers: Optional[dict],
|
|
) -> Tuple[str, dict]:
|
|
if api_key is None and headers is None:
|
|
if custom_endpoint:
|
|
raise DatabricksError(
|
|
status_code=400,
|
|
message="Missing API Key - A call is being made to LLM Provider but no key is set either in the environment variables ({LLM_PROVIDER}_API_KEY) or via params",
|
|
)
|
|
else:
|
|
api_base, headers = self._get_databricks_credentials(
|
|
api_base=api_base, api_key=api_key, headers=headers
|
|
)
|
|
|
|
if api_base is None:
|
|
if custom_endpoint:
|
|
raise DatabricksError(
|
|
status_code=400,
|
|
message="Missing API Base - A call is being made to LLM Provider but no api base is set either in the environment variables ({LLM_PROVIDER}_API_KEY) or via params",
|
|
)
|
|
else:
|
|
api_base, headers = self._get_databricks_credentials(
|
|
api_base=api_base, api_key=api_key, headers=headers
|
|
)
|
|
|
|
if headers is None:
|
|
headers = {
|
|
"Authorization": "Bearer {}".format(api_key),
|
|
"Content-Type": "application/json",
|
|
}
|
|
else:
|
|
if api_key is not None:
|
|
headers.update({"Authorization": "Bearer {}".format(api_key)})
|
|
|
|
if api_key is not None:
|
|
headers["Authorization"] = f"Bearer {api_key}"
|
|
|
|
if endpoint_type == "chat_completions" and custom_endpoint is not True:
|
|
api_base = "{}/chat/completions".format(api_base)
|
|
elif endpoint_type == "embeddings" and custom_endpoint is not True:
|
|
api_base = "{}/embeddings".format(api_base)
|
|
return api_base, headers
|
|
|
|
async def acompletion_stream_function(
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
custom_llm_provider: str,
|
|
api_base: str,
|
|
custom_prompt_dict: dict,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
api_key,
|
|
logging_obj,
|
|
stream,
|
|
data: dict,
|
|
optional_params=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
headers={},
|
|
client: Optional[AsyncHTTPHandler] = None,
|
|
streaming_decoder: Optional[CustomStreamingDecoder] = None,
|
|
) -> CustomStreamWrapper:
|
|
|
|
data["stream"] = True
|
|
completion_stream = await make_call(
|
|
client=client,
|
|
api_base=api_base,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
model=model,
|
|
messages=messages,
|
|
logging_obj=logging_obj,
|
|
streaming_decoder=streaming_decoder,
|
|
)
|
|
streamwrapper = CustomStreamWrapper(
|
|
completion_stream=completion_stream,
|
|
model=model,
|
|
custom_llm_provider=custom_llm_provider,
|
|
logging_obj=logging_obj,
|
|
)
|
|
return streamwrapper
|
|
|
|
async def acompletion_function(
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
api_base: str,
|
|
custom_prompt_dict: dict,
|
|
model_response: ModelResponse,
|
|
custom_llm_provider: str,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
api_key,
|
|
logging_obj,
|
|
stream,
|
|
data: dict,
|
|
base_model: Optional[str],
|
|
optional_params: dict,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
headers={},
|
|
timeout: Optional[Union[float, httpx.Timeout]] = None,
|
|
) -> ModelResponse:
|
|
if timeout is None:
|
|
timeout = httpx.Timeout(timeout=600.0, connect=5.0)
|
|
|
|
self.async_handler = get_async_httpx_client(
|
|
llm_provider=litellm.LlmProviders.DATABRICKS,
|
|
params={"timeout": timeout},
|
|
)
|
|
|
|
try:
|
|
response = await self.async_handler.post(
|
|
api_base, headers=headers, data=json.dumps(data)
|
|
)
|
|
response.raise_for_status()
|
|
|
|
response_json = response.json()
|
|
except httpx.HTTPStatusError as e:
|
|
raise DatabricksError(
|
|
status_code=e.response.status_code,
|
|
message=e.response.text,
|
|
)
|
|
except httpx.TimeoutException:
|
|
raise DatabricksError(status_code=408, message="Timeout error occurred.")
|
|
except Exception as e:
|
|
raise DatabricksError(status_code=500, message=str(e))
|
|
|
|
logging_obj.post_call(
|
|
input=messages,
|
|
api_key="",
|
|
original_response=response_json,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
response = ModelResponse(**response_json)
|
|
|
|
response.model = custom_llm_provider + "/" + (response.model or "")
|
|
|
|
if base_model is not None:
|
|
response._hidden_params["model"] = base_model
|
|
return response
|
|
|
|
def completion(
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
api_base: str,
|
|
custom_llm_provider: str,
|
|
custom_prompt_dict: dict,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
api_key: Optional[str],
|
|
logging_obj,
|
|
optional_params: dict,
|
|
acompletion=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
headers: Optional[dict] = None,
|
|
timeout: Optional[Union[float, httpx.Timeout]] = None,
|
|
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
|
|
custom_endpoint: Optional[bool] = None,
|
|
streaming_decoder: Optional[
|
|
CustomStreamingDecoder
|
|
] = None, # if openai-compatible api needs custom stream decoder - e.g. sagemaker
|
|
):
|
|
custom_endpoint = custom_endpoint or optional_params.pop(
|
|
"custom_endpoint", None
|
|
)
|
|
base_model: Optional[str] = optional_params.pop("base_model", None)
|
|
api_base, headers = self._validate_environment(
|
|
api_base=api_base,
|
|
api_key=api_key,
|
|
endpoint_type="chat_completions",
|
|
custom_endpoint=custom_endpoint,
|
|
headers=headers,
|
|
)
|
|
## Load Config
|
|
config = litellm.DatabricksConfig().get_config()
|
|
for k, v in config.items():
|
|
if (
|
|
k not in optional_params
|
|
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
optional_params[k] = v
|
|
|
|
stream: bool = optional_params.get("stream", None) or False
|
|
optional_params.pop(
|
|
"max_retries", None
|
|
) # [TODO] add max retry support at llm api call level
|
|
optional_params["stream"] = stream
|
|
|
|
if messages is not None and custom_llm_provider is not None:
|
|
provider_config = ProviderConfigManager.get_provider_config(
|
|
model=model, provider=LlmProviders(custom_llm_provider)
|
|
)
|
|
messages = provider_config._transform_messages(messages)
|
|
|
|
data = {
|
|
"model": model,
|
|
"messages": messages,
|
|
**optional_params,
|
|
}
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=messages,
|
|
api_key=api_key,
|
|
additional_args={
|
|
"complete_input_dict": data,
|
|
"api_base": api_base,
|
|
"headers": headers,
|
|
},
|
|
)
|
|
if acompletion is True:
|
|
if client is not None and isinstance(client, HTTPHandler):
|
|
client = None
|
|
if (
|
|
stream is not None and stream is True
|
|
): # if function call - fake the streaming (need complete blocks for output parsing in openai format)
|
|
print_verbose("makes async anthropic streaming POST request")
|
|
data["stream"] = stream
|
|
return self.acompletion_stream_function(
|
|
model=model,
|
|
messages=messages,
|
|
data=data,
|
|
api_base=api_base,
|
|
custom_prompt_dict=custom_prompt_dict,
|
|
model_response=model_response,
|
|
print_verbose=print_verbose,
|
|
encoding=encoding,
|
|
api_key=api_key,
|
|
logging_obj=logging_obj,
|
|
optional_params=optional_params,
|
|
stream=stream,
|
|
litellm_params=litellm_params,
|
|
logger_fn=logger_fn,
|
|
headers=headers,
|
|
client=client,
|
|
custom_llm_provider=custom_llm_provider,
|
|
streaming_decoder=streaming_decoder,
|
|
)
|
|
else:
|
|
return self.acompletion_function(
|
|
model=model,
|
|
messages=messages,
|
|
data=data,
|
|
api_base=api_base,
|
|
custom_prompt_dict=custom_prompt_dict,
|
|
custom_llm_provider=custom_llm_provider,
|
|
model_response=model_response,
|
|
print_verbose=print_verbose,
|
|
encoding=encoding,
|
|
api_key=api_key,
|
|
logging_obj=logging_obj,
|
|
optional_params=optional_params,
|
|
stream=stream,
|
|
litellm_params=litellm_params,
|
|
logger_fn=logger_fn,
|
|
headers=headers,
|
|
timeout=timeout,
|
|
base_model=base_model,
|
|
)
|
|
else:
|
|
## COMPLETION CALL
|
|
if stream is True:
|
|
completion_stream = make_sync_call(
|
|
client=(
|
|
client
|
|
if client is not None and isinstance(client, HTTPHandler)
|
|
else None
|
|
),
|
|
api_base=api_base,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
model=model,
|
|
messages=messages,
|
|
logging_obj=logging_obj,
|
|
streaming_decoder=streaming_decoder,
|
|
)
|
|
# completion_stream.__iter__()
|
|
return CustomStreamWrapper(
|
|
completion_stream=completion_stream,
|
|
model=model,
|
|
custom_llm_provider=custom_llm_provider,
|
|
logging_obj=logging_obj,
|
|
)
|
|
else:
|
|
if client is None or not isinstance(client, HTTPHandler):
|
|
client = HTTPHandler(timeout=timeout) # type: ignore
|
|
try:
|
|
response = client.post(
|
|
api_base, headers=headers, data=json.dumps(data)
|
|
)
|
|
response.raise_for_status()
|
|
|
|
response_json = response.json()
|
|
except httpx.HTTPStatusError as e:
|
|
raise DatabricksError(
|
|
status_code=e.response.status_code,
|
|
message=e.response.text,
|
|
)
|
|
except httpx.TimeoutException:
|
|
raise DatabricksError(
|
|
status_code=408, message="Timeout error occurred."
|
|
)
|
|
except Exception as e:
|
|
raise DatabricksError(status_code=500, message=str(e))
|
|
|
|
response = ModelResponse(**response_json)
|
|
|
|
response.model = custom_llm_provider + "/" + (response.model or "")
|
|
|
|
if base_model is not None:
|
|
response._hidden_params["model"] = base_model
|
|
|
|
return response
|
|
|
|
async def aembedding(
|
|
self,
|
|
input: list,
|
|
data: dict,
|
|
model_response: ModelResponse,
|
|
timeout: float,
|
|
api_key: str,
|
|
api_base: str,
|
|
logging_obj,
|
|
headers: dict,
|
|
client=None,
|
|
) -> EmbeddingResponse:
|
|
response = None
|
|
try:
|
|
if client is None or isinstance(client, AsyncHTTPHandler):
|
|
self.async_client = get_async_httpx_client(
|
|
llm_provider=litellm.LlmProviders.DATABRICKS,
|
|
params={"timeout": timeout},
|
|
)
|
|
else:
|
|
self.async_client = client
|
|
|
|
try:
|
|
response = await self.async_client.post(
|
|
api_base,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
) # type: ignore
|
|
|
|
response.raise_for_status()
|
|
|
|
response_json = response.json()
|
|
except httpx.HTTPStatusError as e:
|
|
raise DatabricksError(
|
|
status_code=e.response.status_code,
|
|
message=response.text if response else str(e),
|
|
)
|
|
except httpx.TimeoutException:
|
|
raise DatabricksError(
|
|
status_code=408, message="Timeout error occurred."
|
|
)
|
|
except Exception as e:
|
|
raise DatabricksError(status_code=500, message=str(e))
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": data},
|
|
original_response=response_json,
|
|
)
|
|
return EmbeddingResponse(**response_json)
|
|
except Exception as e:
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
original_response=str(e),
|
|
)
|
|
raise e
|
|
|
|
def embedding(
|
|
self,
|
|
model: str,
|
|
input: list,
|
|
timeout: float,
|
|
logging_obj,
|
|
api_key: Optional[str],
|
|
api_base: Optional[str],
|
|
optional_params: dict,
|
|
model_response: Optional[litellm.utils.EmbeddingResponse] = None,
|
|
client=None,
|
|
aembedding=None,
|
|
headers: Optional[dict] = None,
|
|
) -> EmbeddingResponse:
|
|
api_base, headers = self._validate_environment(
|
|
api_base=api_base,
|
|
api_key=api_key,
|
|
endpoint_type="embeddings",
|
|
custom_endpoint=False,
|
|
headers=headers,
|
|
)
|
|
model = model
|
|
data = {"model": model, "input": input, **optional_params}
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": data, "api_base": api_base},
|
|
)
|
|
|
|
if aembedding is True:
|
|
return self.aembedding(data=data, input=input, logging_obj=logging_obj, model_response=model_response, api_base=api_base, api_key=api_key, timeout=timeout, client=client, headers=headers) # type: ignore
|
|
if client is None or isinstance(client, AsyncHTTPHandler):
|
|
self.client = HTTPHandler(timeout=timeout) # type: ignore
|
|
else:
|
|
self.client = client
|
|
|
|
## EMBEDDING CALL
|
|
try:
|
|
response = self.client.post(
|
|
api_base,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
) # type: ignore
|
|
|
|
response.raise_for_status() # type: ignore
|
|
|
|
response_json = response.json() # type: ignore
|
|
except httpx.HTTPStatusError as e:
|
|
raise DatabricksError(
|
|
status_code=e.response.status_code,
|
|
message=e.response.text,
|
|
)
|
|
except httpx.TimeoutException:
|
|
raise DatabricksError(status_code=408, message="Timeout error occurred.")
|
|
except Exception as e:
|
|
raise DatabricksError(status_code=500, message=str(e))
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": data},
|
|
original_response=response_json,
|
|
)
|
|
|
|
return litellm.EmbeddingResponse(**response_json)
|