mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 03:34:10 +00:00
* refactor: cleanup unused variables + fix pyright errors * feat(health_check.py): Closes https://github.com/BerriAI/litellm/issues/5686 * fix(o1_reasoning.py): add stricter check for o-1 reasoning model * refactor(mistral/): make it easier to see mistral transformation logic * fix(openai.py): fix openai o-1 model param mapping Fixes https://github.com/BerriAI/litellm/issues/5685 * feat(main.py): infer finetuned gemini model from base model Fixes https://github.com/BerriAI/litellm/issues/5678 * docs(vertex.md): update docs to call finetuned gemini models * feat(proxy_server.py): allow admin to hide proxy model aliases Closes https://github.com/BerriAI/litellm/issues/5692 * docs(load_balancing.md): add docs on hiding alias models from proxy config * fix(base.py): don't raise notimplemented error * fix(user_api_key_auth.py): fix model max budget check * fix(router.py): fix elif * fix(user_api_key_auth.py): don't set team_id to empty str * fix(team_endpoints.py): fix response type * test(test_completion.py): handle predibase error * test(test_proxy_server.py): fix test * fix(o1_transformation.py): fix max_completion_token mapping * test(test_image_generation.py): mark flaky test
126 lines
5.2 KiB
Python
126 lines
5.2 KiB
Python
"""
|
|
Transformation logic from OpenAI /v1/chat/completion format to Mistral's /chat/completion format.
|
|
|
|
Why separate file? Make it easy to see how transformation works
|
|
|
|
Docs - https://docs.mistral.ai/api/
|
|
"""
|
|
|
|
import types
|
|
from typing import List, Literal, Optional, Union
|
|
|
|
|
|
class MistralConfig:
|
|
"""
|
|
Reference: https://docs.mistral.ai/api/
|
|
|
|
The class `MistralConfig` provides configuration for the Mistral's Chat API interface. Below are the parameters:
|
|
|
|
- `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2. API Default - 0.7.
|
|
|
|
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling. API Default - 1.
|
|
|
|
- `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion. API Default - null.
|
|
|
|
- `tools` (list or null): A list of available tools for the model. Use this to specify functions for which the model can generate JSON inputs.
|
|
|
|
- `tool_choice` (string - 'auto'/'any'/'none' or null): Specifies if/how functions are called. If set to none the model won't call a function and will generate a message instead. If set to auto the model can choose to either generate a message or call a function. If set to any the model is forced to call a function. Default - 'auto'.
|
|
|
|
- `stop` (string or array of strings): Stop generation if this token is detected. Or if one of these tokens is detected when providing an array
|
|
|
|
- `random_seed` (integer or null): The seed to use for random sampling. If set, different calls will generate deterministic results.
|
|
|
|
- `safe_prompt` (boolean): Whether to inject a safety prompt before all conversations. API Default - 'false'.
|
|
|
|
- `response_format` (object or null): An object specifying the format that the model must output. Setting to { "type": "json_object" } enables JSON mode, which guarantees the message the model generates is in JSON. When using JSON mode you MUST also instruct the model to produce JSON yourself with a system or a user message.
|
|
"""
|
|
|
|
temperature: Optional[int] = None
|
|
top_p: Optional[int] = None
|
|
max_tokens: Optional[int] = None
|
|
tools: Optional[list] = None
|
|
tool_choice: Optional[Literal["auto", "any", "none"]] = None
|
|
random_seed: Optional[int] = None
|
|
safe_prompt: Optional[bool] = None
|
|
response_format: Optional[dict] = None
|
|
stop: Optional[Union[str, list]] = None
|
|
|
|
def __init__(
|
|
self,
|
|
temperature: Optional[int] = None,
|
|
top_p: Optional[int] = None,
|
|
max_tokens: Optional[int] = None,
|
|
tools: Optional[list] = None,
|
|
tool_choice: Optional[Literal["auto", "any", "none"]] = None,
|
|
random_seed: Optional[int] = None,
|
|
safe_prompt: Optional[bool] = None,
|
|
response_format: Optional[dict] = None,
|
|
stop: Optional[Union[str, list]] = None,
|
|
) -> None:
|
|
locals_ = locals().copy()
|
|
for key, value in locals_.items():
|
|
if key != "self" and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return {
|
|
k: v
|
|
for k, v in cls.__dict__.items()
|
|
if not k.startswith("__")
|
|
and not isinstance(
|
|
v,
|
|
(
|
|
types.FunctionType,
|
|
types.BuiltinFunctionType,
|
|
classmethod,
|
|
staticmethod,
|
|
),
|
|
)
|
|
and v is not None
|
|
}
|
|
|
|
def get_supported_openai_params(self):
|
|
return [
|
|
"stream",
|
|
"temperature",
|
|
"top_p",
|
|
"max_tokens",
|
|
"tools",
|
|
"tool_choice",
|
|
"seed",
|
|
"stop",
|
|
"response_format",
|
|
]
|
|
|
|
def _map_tool_choice(self, tool_choice: str) -> str:
|
|
if tool_choice == "auto" or tool_choice == "none":
|
|
return tool_choice
|
|
elif tool_choice == "required":
|
|
return "any"
|
|
else: # openai 'tool_choice' object param not supported by Mistral API
|
|
return "any"
|
|
|
|
def map_openai_params(self, non_default_params: dict, optional_params: dict):
|
|
for param, value in non_default_params.items():
|
|
if param == "max_tokens":
|
|
optional_params["max_tokens"] = value
|
|
if param == "tools":
|
|
optional_params["tools"] = value
|
|
if param == "stream" and value is True:
|
|
optional_params["stream"] = value
|
|
if param == "temperature":
|
|
optional_params["temperature"] = value
|
|
if param == "top_p":
|
|
optional_params["top_p"] = value
|
|
if param == "stop":
|
|
optional_params["stop"] = value
|
|
if param == "tool_choice" and isinstance(value, str):
|
|
optional_params["tool_choice"] = self._map_tool_choice(
|
|
tool_choice=value
|
|
)
|
|
if param == "seed":
|
|
optional_params["extra_body"] = {"random_seed": value}
|
|
if param == "response_format":
|
|
optional_params["response_format"] = value
|
|
return optional_params
|