mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 13s
* build: ensure all regional bedrock models have same supported values as base bedrock model prevents drift * test(base_llm_unit_tests.py): add testing for nested pydantic objects * fix(test_utils.py): add test_get_potential_model_names * fix(anthropic/chat/transformation.py): support nested pydantic objects Fixes https://github.com/BerriAI/litellm/issues/7755
67 lines
1.8 KiB
Python
67 lines
1.8 KiB
Python
from abc import ABC, abstractmethod
|
|
from typing import List, Optional, Type, Union
|
|
|
|
from openai.lib import _parsing, _pydantic
|
|
from pydantic import BaseModel
|
|
|
|
from litellm.types.utils import ModelInfoBase
|
|
|
|
|
|
class BaseLLMModelInfo(ABC):
|
|
@abstractmethod
|
|
def get_model_info(
|
|
self,
|
|
model: str,
|
|
existing_model_info: Optional[ModelInfoBase] = None,
|
|
) -> Optional[ModelInfoBase]:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def get_models(self) -> List[str]:
|
|
pass
|
|
|
|
@staticmethod
|
|
@abstractmethod
|
|
def get_api_key(api_key: Optional[str] = None) -> Optional[str]:
|
|
pass
|
|
|
|
@staticmethod
|
|
@abstractmethod
|
|
def get_api_base(api_base: Optional[str] = None) -> Optional[str]:
|
|
pass
|
|
|
|
|
|
def type_to_response_format_param(
|
|
response_format: Optional[Union[Type[BaseModel], dict]],
|
|
ref_template: Optional[str] = None,
|
|
) -> Optional[dict]:
|
|
"""
|
|
Re-implementation of openai's 'type_to_response_format_param' function
|
|
|
|
Used for converting pydantic object to api schema.
|
|
"""
|
|
if response_format is None:
|
|
return None
|
|
|
|
if isinstance(response_format, dict):
|
|
return response_format
|
|
|
|
# type checkers don't narrow the negation of a `TypeGuard` as it isn't
|
|
# a safe default behaviour but we know that at this point the `response_format`
|
|
# can only be a `type`
|
|
if not _parsing._completions.is_basemodel_type(response_format):
|
|
raise TypeError(f"Unsupported response_format type - {response_format}")
|
|
|
|
if ref_template is not None:
|
|
schema = response_format.model_json_schema(ref_template=ref_template)
|
|
else:
|
|
schema = _pydantic.to_strict_json_schema(response_format)
|
|
|
|
return {
|
|
"type": "json_schema",
|
|
"json_schema": {
|
|
"schema": schema,
|
|
"name": response_format.__name__,
|
|
"strict": True,
|
|
},
|
|
}
|