litellm-mirror/litellm/llms/base_llm/base_utils.py
Krish Dholakia 71c41f8f33
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 13s
QA: ensure all bedrock regional models have same supported_ as base + Anthropic nested pydantic object support (#7844)
* build: ensure all regional bedrock models have same supported values as base bedrock model

prevents drift

* test(base_llm_unit_tests.py): add testing for nested pydantic objects

* fix(test_utils.py): add test_get_potential_model_names

* fix(anthropic/chat/transformation.py): support nested pydantic objects

Fixes https://github.com/BerriAI/litellm/issues/7755
2025-01-17 19:49:12 -08:00

67 lines
1.8 KiB
Python

from abc import ABC, abstractmethod
from typing import List, Optional, Type, Union
from openai.lib import _parsing, _pydantic
from pydantic import BaseModel
from litellm.types.utils import ModelInfoBase
class BaseLLMModelInfo(ABC):
@abstractmethod
def get_model_info(
self,
model: str,
existing_model_info: Optional[ModelInfoBase] = None,
) -> Optional[ModelInfoBase]:
pass
@abstractmethod
def get_models(self) -> List[str]:
pass
@staticmethod
@abstractmethod
def get_api_key(api_key: Optional[str] = None) -> Optional[str]:
pass
@staticmethod
@abstractmethod
def get_api_base(api_base: Optional[str] = None) -> Optional[str]:
pass
def type_to_response_format_param(
response_format: Optional[Union[Type[BaseModel], dict]],
ref_template: Optional[str] = None,
) -> Optional[dict]:
"""
Re-implementation of openai's 'type_to_response_format_param' function
Used for converting pydantic object to api schema.
"""
if response_format is None:
return None
if isinstance(response_format, dict):
return response_format
# type checkers don't narrow the negation of a `TypeGuard` as it isn't
# a safe default behaviour but we know that at this point the `response_format`
# can only be a `type`
if not _parsing._completions.is_basemodel_type(response_format):
raise TypeError(f"Unsupported response_format type - {response_format}")
if ref_template is not None:
schema = response_format.model_json_schema(ref_template=ref_template)
else:
schema = _pydantic.to_strict_json_schema(response_format)
return {
"type": "json_schema",
"json_schema": {
"schema": schema,
"name": response_format.__name__,
"strict": True,
},
}