litellm-mirror/tests/local_testing/test_get_model_info.py
Krish Dholakia 71eaedac6f LiteLLM Common Base LLM Config (pt.4): Move Ollama to Base LLM Config (#7157)
* refactor(ollama/): refactor ollama `/api/generate` to use base llm config

Addresses https://github.com/andrewyng/aisuite/issues/113#issuecomment-2512369132

* test: skip unresponsive test

* test(test_secret_manager.py): mark flaky test

* test: fix google sm test
2024-12-10 21:39:28 -08:00

149 lines
4.7 KiB
Python

# What is this?
## Unit testing for the 'get_model_info()' function
import os
import sys
import traceback
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest
import litellm
from litellm import get_model_info
from unittest.mock import AsyncMock, MagicMock, patch
def test_get_model_info_simple_model_name():
"""
tests if model name given, and model exists in model info - the object is returned
"""
model = "claude-3-opus-20240229"
litellm.get_model_info(model)
def test_get_model_info_custom_llm_with_model_name():
"""
Tests if {custom_llm_provider}/{model_name} name given, and model exists in model info, the object is returned
"""
model = "anthropic/claude-3-opus-20240229"
litellm.get_model_info(model)
def test_get_model_info_custom_llm_with_same_name_vllm():
"""
Tests if {custom_llm_provider}/{model_name} name given, and model exists in model info, the object is returned
"""
model = "command-r-plus"
provider = "openai" # vllm is openai-compatible
try:
litellm.get_model_info(model, custom_llm_provider=provider)
pytest.fail("Expected get model info to fail for an unmapped model/provider")
except Exception:
pass
def test_get_model_info_shows_correct_supports_vision():
info = litellm.get_model_info("gemini/gemini-1.5-flash")
print("info", info)
assert info["supports_vision"] is True
def test_get_model_info_shows_assistant_prefill():
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
info = litellm.get_model_info("deepseek/deepseek-chat")
print("info", info)
assert info.get("supports_assistant_prefill") is True
def test_get_model_info_shows_supports_prompt_caching():
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
info = litellm.get_model_info("deepseek/deepseek-chat")
print("info", info)
assert info.get("supports_prompt_caching") is True
def test_get_model_info_finetuned_models():
info = litellm.get_model_info("ft:gpt-3.5-turbo:my-org:custom_suffix:id")
print("info", info)
assert info["input_cost_per_token"] == 0.000003
def test_get_model_info_gemini_pro():
info = litellm.get_model_info("gemini-1.5-pro-002")
print("info", info)
assert info["key"] == "gemini-1.5-pro-002"
def test_get_model_info_ollama_chat():
from litellm.llms.ollama.completion.transformation import OllamaConfig
with patch.object(
litellm.module_level_client,
"post",
return_value=MagicMock(
json=lambda: {
"model_info": {"llama.context_length": 32768},
"template": "tools",
}
),
) as mock_client:
info = OllamaConfig().get_model_info("mistral")
assert info["supports_function_calling"] is True
info = get_model_info("ollama/mistral")
assert info["supports_function_calling"] is True
mock_client.assert_called()
print(mock_client.call_args.kwargs)
assert mock_client.call_args.kwargs["json"]["name"] == "mistral"
def test_get_model_info_gemini():
"""
Tests if ALL gemini models have 'tpm' and 'rpm' in the model info
"""
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
model_map = litellm.model_cost
for model, info in model_map.items():
if model.startswith("gemini/") and not "gemma" in model:
assert info.get("tpm") is not None, f"{model} does not have tpm"
assert info.get("rpm") is not None, f"{model} does not have rpm"
def test_get_model_info_bedrock_region():
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
args = {
"model": "us.anthropic.claude-3-5-sonnet-20241022-v2:0",
"custom_llm_provider": "bedrock",
}
litellm.model_cost.pop("us.anthropic.claude-3-5-sonnet-20241022-v2:0", None)
info = litellm.get_model_info(**args)
print("info", info)
assert info["key"] == "anthropic.claude-3-5-sonnet-20241022-v2:0"
assert info["litellm_provider"] == "bedrock"
@pytest.mark.parametrize(
"model",
[
"ft:gpt-3.5-turbo:my-org:custom_suffix:id",
"ft:gpt-4-0613:my-org:custom_suffix:id",
"ft:davinci-002:my-org:custom_suffix:id",
"ft:gpt-4-0613:my-org:custom_suffix:id",
"ft:babbage-002:my-org:custom_suffix:id",
"gpt-35-turbo",
"ada",
],
)
def test_get_model_info_completion_cost_unit_tests(model):
info = litellm.get_model_info(model)
print("info", info)