litellm-mirror/litellm/tests/test_sagemaker.py
Krish Dholakia 72e961af3c
LiteLLM Minor Fixes and Improvements (08/06/2024) (#5567)
* fix(utils.py): return citations for perplexity streaming

Fixes https://github.com/BerriAI/litellm/issues/5535

* fix(anthropic/chat.py): support fallbacks for anthropic streaming (#5542)

* fix(anthropic/chat.py): support fallbacks for anthropic streaming

Fixes https://github.com/BerriAI/litellm/issues/5512

* fix(anthropic/chat.py): use module level http client if none given (prevents early client closure)

* fix: fix linting errors

* fix(http_handler.py): fix raise_for_status error handling

* test: retry flaky test

* fix otel type

* fix(bedrock/embed): fix error raising

* test(test_openai_batches_and_files.py): skip azure batches test (for now) quota exceeded

* fix(test_router.py): skip azure batch route test (for now) - hit batch quota limits

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>

* All `model_group_alias` should show up in `/models`, `/model/info` , `/model_group/info` (#5539)

* fix(router.py): support returning model_alias model names in `/v1/models`

* fix(proxy_server.py): support returning model alias'es on `/model/info`

* feat(router.py): support returning model group alias for `/model_group/info`

* fix(proxy_server.py): fix linting errors

* fix(proxy_server.py): fix linting errors

* build(model_prices_and_context_window.json): add amazon titan text premier pricing information

Closes https://github.com/BerriAI/litellm/issues/5560

* feat(litellm_logging.py): log standard logging response object for pass through endpoints. Allows bedrock /invoke agent calls to be correctly logged to langfuse + s3

* fix(success_handler.py): fix linting error

* fix(success_handler.py): fix linting errors

* fix(team_endpoints.py): Allows admin to update team member budgets

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
2024-09-06 17:16:24 -07:00

419 lines
14 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import json
import os
import sys
import traceback
from dotenv import load_dotenv
load_dotenv()
import io
import os
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import os
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
import litellm
from litellm import RateLimitError, Timeout, completion, completion_cost, embedding
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
from litellm.llms.prompt_templates.factory import anthropic_messages_pt
# litellm.num_retries =3
litellm.cache = None
litellm.success_callback = []
user_message = "Write a short poem about the sky"
messages = [{"content": user_message, "role": "user"}]
import logging
from litellm._logging import verbose_logger
def logger_fn(user_model_dict):
print(f"user_model_dict: {user_model_dict}")
@pytest.fixture(autouse=True)
def reset_callbacks():
print("\npytest fixture - resetting callbacks")
litellm.success_callback = []
litellm._async_success_callback = []
litellm.failure_callback = []
litellm.callbacks = []
@pytest.mark.asyncio()
@pytest.mark.parametrize("sync_mode", [True, False])
async def test_completion_sagemaker(sync_mode):
try:
litellm.set_verbose = True
verbose_logger.setLevel(logging.DEBUG)
print("testing sagemaker")
if sync_mode is True:
response = litellm.completion(
model="sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
messages=[
{"role": "user", "content": "hi"},
],
temperature=0.2,
max_tokens=80,
input_cost_per_second=0.000420,
)
else:
response = await litellm.acompletion(
model="sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
messages=[
{"role": "user", "content": "hi"},
],
temperature=0.2,
max_tokens=80,
input_cost_per_second=0.000420,
)
# Add any assertions here to check the response
print(response)
cost = completion_cost(completion_response=response)
print("calculated cost", cost)
assert (
cost > 0.0 and cost < 1.0
) # should never be > $1 for a single completion call
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@pytest.mark.asyncio()
@pytest.mark.parametrize(
"sync_mode",
[True, False],
)
async def test_completion_sagemaker_messages_api(sync_mode):
try:
litellm.set_verbose = True
verbose_logger.setLevel(logging.DEBUG)
print("testing sagemaker")
if sync_mode is True:
resp = litellm.completion(
model="sagemaker_chat/huggingface-pytorch-tgi-inference-2024-08-23-15-48-59-245",
messages=[
{"role": "user", "content": "hi"},
],
temperature=0.2,
max_tokens=80,
)
print(resp)
else:
resp = await litellm.acompletion(
model="sagemaker_chat/huggingface-pytorch-tgi-inference-2024-08-23-15-48-59-245",
messages=[
{"role": "user", "content": "hi"},
],
temperature=0.2,
max_tokens=80,
)
print(resp)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@pytest.mark.asyncio()
@pytest.mark.parametrize("sync_mode", [False, True])
@pytest.mark.parametrize(
"model",
[
"sagemaker_chat/huggingface-pytorch-tgi-inference-2024-08-23-15-48-59-245",
"sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
],
)
@pytest.mark.flaky(retries=3, delay=1)
async def test_completion_sagemaker_stream(sync_mode, model):
try:
from litellm.tests.test_streaming import streaming_format_tests
litellm.set_verbose = False
print("testing sagemaker")
verbose_logger.setLevel(logging.DEBUG)
full_text = ""
if sync_mode is True:
response = litellm.completion(
model=model,
messages=[
{"role": "user", "content": "hi - what is ur name"},
],
temperature=0.2,
stream=True,
max_tokens=80,
input_cost_per_second=0.000420,
)
for idx, chunk in enumerate(response):
print(chunk)
streaming_format_tests(idx=idx, chunk=chunk)
full_text += chunk.choices[0].delta.content or ""
print("SYNC RESPONSE full text", full_text)
else:
response = await litellm.acompletion(
model=model,
messages=[
{"role": "user", "content": "hi - what is ur name"},
],
stream=True,
temperature=0.2,
max_tokens=80,
input_cost_per_second=0.000420,
)
print("streaming response")
idx = 0
async for chunk in response:
print(chunk)
streaming_format_tests(idx=idx, chunk=chunk)
full_text += chunk.choices[0].delta.content or ""
idx += 1
print("ASYNC RESPONSE full text", full_text)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@pytest.mark.asyncio
async def test_acompletion_sagemaker_non_stream():
mock_response = AsyncMock()
def return_val():
return {
"generated_text": "This is a mock response from SageMaker.",
"id": "cmpl-mockid",
"object": "text_completion",
"created": 1629800000,
"model": "sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
"choices": [
{
"text": "This is a mock response from SageMaker.",
"index": 0,
"logprobs": None,
"finish_reason": "length",
}
],
"usage": {"prompt_tokens": 1, "completion_tokens": 8, "total_tokens": 9},
}
mock_response.json = return_val
mock_response.status_code = 200
expected_payload = {
"inputs": "hi",
"parameters": {"temperature": 0.2, "max_new_tokens": 80},
}
with patch(
"litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post",
return_value=mock_response,
) as mock_post:
# Act: Call the litellm.acompletion function
response = await litellm.acompletion(
model="sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
messages=[
{"role": "user", "content": "hi"},
],
temperature=0.2,
max_tokens=80,
input_cost_per_second=0.000420,
)
# Print what was called on the mock
print("call args=", mock_post.call_args)
# Assert
mock_post.assert_called_once()
_, kwargs = mock_post.call_args
args_to_sagemaker = kwargs["json"]
print("Arguments passed to sagemaker=", args_to_sagemaker)
assert args_to_sagemaker == expected_payload
assert (
kwargs["url"]
== "https://runtime.sagemaker.us-west-2.amazonaws.com/endpoints/jumpstart-dft-hf-textgeneration1-mp-20240815-185614/invocations"
)
@pytest.mark.asyncio
async def test_completion_sagemaker_non_stream():
mock_response = MagicMock()
def return_val():
return {
"generated_text": "This is a mock response from SageMaker.",
"id": "cmpl-mockid",
"object": "text_completion",
"created": 1629800000,
"model": "sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
"choices": [
{
"text": "This is a mock response from SageMaker.",
"index": 0,
"logprobs": None,
"finish_reason": "length",
}
],
"usage": {"prompt_tokens": 1, "completion_tokens": 8, "total_tokens": 9},
}
mock_response.json = return_val
mock_response.status_code = 200
expected_payload = {
"inputs": "hi",
"parameters": {"temperature": 0.2, "max_new_tokens": 80},
}
with patch(
"litellm.llms.custom_httpx.http_handler.HTTPHandler.post",
return_value=mock_response,
) as mock_post:
# Act: Call the litellm.acompletion function
response = litellm.completion(
model="sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
messages=[
{"role": "user", "content": "hi"},
],
temperature=0.2,
max_tokens=80,
input_cost_per_second=0.000420,
)
# Print what was called on the mock
print("call args=", mock_post.call_args)
# Assert
mock_post.assert_called_once()
_, kwargs = mock_post.call_args
args_to_sagemaker = kwargs["json"]
print("Arguments passed to sagemaker=", args_to_sagemaker)
assert args_to_sagemaker == expected_payload
assert (
kwargs["url"]
== "https://runtime.sagemaker.us-west-2.amazonaws.com/endpoints/jumpstart-dft-hf-textgeneration1-mp-20240815-185614/invocations"
)
@pytest.mark.asyncio
async def test_completion_sagemaker_prompt_template_non_stream():
mock_response = MagicMock()
def return_val():
return {
"generated_text": "This is a mock response from SageMaker.",
"id": "cmpl-mockid",
"object": "text_completion",
"created": 1629800000,
"model": "sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
"choices": [
{
"text": "This is a mock response from SageMaker.",
"index": 0,
"logprobs": None,
"finish_reason": "length",
}
],
"usage": {"prompt_tokens": 1, "completion_tokens": 8, "total_tokens": 9},
}
mock_response.json = return_val
mock_response.status_code = 200
expected_payload = {
"inputs": "<begin▁of▁sentence>You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer\n\n### Instruction:\nhi\n\n\n### Response:\n",
"parameters": {"temperature": 0.2, "max_new_tokens": 80},
}
with patch(
"litellm.llms.custom_httpx.http_handler.HTTPHandler.post",
return_value=mock_response,
) as mock_post:
# Act: Call the litellm.acompletion function
response = litellm.completion(
model="sagemaker/deepseek_coder_6.7_instruct",
messages=[
{"role": "user", "content": "hi"},
],
temperature=0.2,
max_tokens=80,
hf_model_name="deepseek-ai/deepseek-coder-6.7b-instruct",
)
# Print what was called on the mock
print("call args=", mock_post.call_args)
# Assert
mock_post.assert_called_once()
_, kwargs = mock_post.call_args
args_to_sagemaker = kwargs["json"]
print("Arguments passed to sagemaker=", args_to_sagemaker)
assert args_to_sagemaker == expected_payload
@pytest.mark.asyncio
async def test_completion_sagemaker_non_stream_with_aws_params():
mock_response = MagicMock()
def return_val():
return {
"generated_text": "This is a mock response from SageMaker.",
"id": "cmpl-mockid",
"object": "text_completion",
"created": 1629800000,
"model": "sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
"choices": [
{
"text": "This is a mock response from SageMaker.",
"index": 0,
"logprobs": None,
"finish_reason": "length",
}
],
"usage": {"prompt_tokens": 1, "completion_tokens": 8, "total_tokens": 9},
}
mock_response.json = return_val
mock_response.status_code = 200
expected_payload = {
"inputs": "hi",
"parameters": {"temperature": 0.2, "max_new_tokens": 80},
}
with patch(
"litellm.llms.custom_httpx.http_handler.HTTPHandler.post",
return_value=mock_response,
) as mock_post:
# Act: Call the litellm.acompletion function
response = litellm.completion(
model="sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
messages=[
{"role": "user", "content": "hi"},
],
temperature=0.2,
max_tokens=80,
input_cost_per_second=0.000420,
aws_access_key_id="gm",
aws_secret_access_key="s",
aws_region_name="us-west-5",
)
# Print what was called on the mock
print("call args=", mock_post.call_args)
# Assert
mock_post.assert_called_once()
_, kwargs = mock_post.call_args
args_to_sagemaker = kwargs["json"]
print("Arguments passed to sagemaker=", args_to_sagemaker)
assert args_to_sagemaker == expected_payload
assert (
kwargs["url"]
== "https://runtime.sagemaker.us-west-5.amazonaws.com/endpoints/jumpstart-dft-hf-textgeneration1-mp-20240815-185614/invocations"
)