litellm-mirror/litellm/llms/watsonx/completion/transformation.py
Krish Dholakia 76795dba39
Deepseek r1 support + watsonx qa improvements (#7907)
* fix(types/utils.py): support returning 'reasoning_content' for deepseek models

Fixes https://github.com/BerriAI/litellm/issues/7877#issuecomment-2603813218

* fix(convert_dict_to_response.py): return deepseek response in provider_specific_field

allows for separating openai vs. non-openai params in model response

* fix(utils.py): support 'provider_specific_field' in delta chunk as well

allows deepseek reasoning content chunk to be returned to user from stream as well

Fixes https://github.com/BerriAI/litellm/issues/7877#issuecomment-2603813218

* fix(watsonx/chat/handler.py): fix passing space id to watsonx on chat route

* fix(watsonx/): fix watsonx_text/ route with space id

* fix(watsonx/): qa item - also adds better unit testing for watsonx embedding calls

* fix(utils.py): rename to '..fields'

* fix: fix linting errors

* fix(utils.py): fix typing - don't show provider-specific field if none or empty - prevents default respons
e from being non-oai compatible

* fix: cleanup unused imports

* docs(deepseek.md): add docs for deepseek reasoning model
2025-01-21 23:13:15 -08:00

390 lines
14 KiB
Python

import time
from datetime import datetime
from typing import (
TYPE_CHECKING,
Any,
AsyncIterator,
Dict,
Iterator,
List,
Optional,
Union,
)
import httpx
from litellm.llms.base_llm.base_model_iterator import BaseModelResponseIterator
from litellm.types.llms.openai import AllMessageValues, ChatCompletionUsageBlock
from litellm.types.llms.watsonx import WatsonXAIEndpoint
from litellm.types.utils import GenericStreamingChunk, ModelResponse, Usage
from litellm.utils import map_finish_reason
from ...base_llm.chat.transformation import BaseConfig
from ..common_utils import (
IBMWatsonXMixin,
WatsonXAIError,
_get_api_params,
convert_watsonx_messages_to_prompt,
)
if TYPE_CHECKING:
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
LiteLLMLoggingObj = _LiteLLMLoggingObj
else:
LiteLLMLoggingObj = Any
class IBMWatsonXAIConfig(IBMWatsonXMixin, BaseConfig):
"""
Reference: https://cloud.ibm.com/apidocs/watsonx-ai#text-generation
(See ibm_watsonx_ai.metanames.GenTextParamsMetaNames for a list of all available params)
Supported params for all available watsonx.ai foundational models.
- `decoding_method` (str): One of "greedy" or "sample"
- `temperature` (float): Sets the model temperature for sampling - not available when decoding_method='greedy'.
- `max_new_tokens` (integer): Maximum length of the generated tokens.
- `min_new_tokens` (integer): Maximum length of input tokens. Any more than this will be truncated.
- `length_penalty` (dict): A dictionary with keys "decay_factor" and "start_index".
- `stop_sequences` (string[]): list of strings to use as stop sequences.
- `top_k` (integer): top k for sampling - not available when decoding_method='greedy'.
- `top_p` (integer): top p for sampling - not available when decoding_method='greedy'.
- `repetition_penalty` (float): token repetition penalty during text generation.
- `truncate_input_tokens` (integer): Truncate input tokens to this length.
- `include_stop_sequences` (bool): If True, the stop sequence will be included at the end of the generated text in the case of a match.
- `return_options` (dict): A dictionary of options to return. Options include "input_text", "generated_tokens", "input_tokens", "token_ranks". Values are boolean.
- `random_seed` (integer): Random seed for text generation.
- `moderations` (dict): Dictionary of properties that control the moderations, for usages such as Hate and profanity (HAP) and PII filtering.
- `stream` (bool): If True, the model will return a stream of responses.
"""
decoding_method: Optional[str] = "sample"
temperature: Optional[float] = None
max_new_tokens: Optional[int] = None # litellm.max_tokens
min_new_tokens: Optional[int] = None
length_penalty: Optional[dict] = None # e.g {"decay_factor": 2.5, "start_index": 5}
stop_sequences: Optional[List[str]] = None # e.g ["}", ")", "."]
top_k: Optional[int] = None
top_p: Optional[float] = None
repetition_penalty: Optional[float] = None
truncate_input_tokens: Optional[int] = None
include_stop_sequences: Optional[bool] = False
return_options: Optional[Dict[str, bool]] = None
random_seed: Optional[int] = None # e.g 42
moderations: Optional[dict] = None
stream: Optional[bool] = False
def __init__(
self,
decoding_method: Optional[str] = None,
temperature: Optional[float] = None,
max_new_tokens: Optional[int] = None,
min_new_tokens: Optional[int] = None,
length_penalty: Optional[dict] = None,
stop_sequences: Optional[List[str]] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
repetition_penalty: Optional[float] = None,
truncate_input_tokens: Optional[int] = None,
include_stop_sequences: Optional[bool] = None,
return_options: Optional[dict] = None,
random_seed: Optional[int] = None,
moderations: Optional[dict] = None,
stream: Optional[bool] = None,
**kwargs,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return super().get_config()
def is_watsonx_text_param(self, param: str) -> bool:
"""
Determine if user passed in a watsonx.ai text generation param
"""
text_generation_params = [
"decoding_method",
"max_new_tokens",
"min_new_tokens",
"length_penalty",
"stop_sequences",
"top_k",
"repetition_penalty",
"truncate_input_tokens",
"include_stop_sequences",
"return_options",
"random_seed",
"moderations",
"decoding_method",
"min_tokens",
]
return param in text_generation_params
def get_supported_openai_params(self, model: str):
return [
"temperature", # equivalent to temperature
"max_tokens", # equivalent to max_new_tokens
"top_p", # equivalent to top_p
"frequency_penalty", # equivalent to repetition_penalty
"stop", # equivalent to stop_sequences
"seed", # equivalent to random_seed
"stream", # equivalent to stream
]
def map_openai_params(
self,
non_default_params: Dict,
optional_params: Dict,
model: str,
drop_params: bool,
) -> Dict:
extra_body = {}
for k, v in non_default_params.items():
if k == "max_tokens":
optional_params["max_new_tokens"] = v
elif k == "stream":
optional_params["stream"] = v
elif k == "temperature":
optional_params["temperature"] = v
elif k == "top_p":
optional_params["top_p"] = v
elif k == "frequency_penalty":
optional_params["repetition_penalty"] = v
elif k == "seed":
optional_params["random_seed"] = v
elif k == "stop":
optional_params["stop_sequences"] = v
elif k == "decoding_method":
extra_body["decoding_method"] = v
elif k == "min_tokens":
extra_body["min_new_tokens"] = v
elif k == "top_k":
extra_body["top_k"] = v
elif k == "truncate_input_tokens":
extra_body["truncate_input_tokens"] = v
elif k == "length_penalty":
extra_body["length_penalty"] = v
elif k == "time_limit":
extra_body["time_limit"] = v
elif k == "return_options":
extra_body["return_options"] = v
if extra_body:
optional_params["extra_body"] = extra_body
return optional_params
def get_mapped_special_auth_params(self) -> dict:
"""
Common auth params across bedrock/vertex_ai/azure/watsonx
"""
return {
"project": "watsonx_project",
"region_name": "watsonx_region_name",
"token": "watsonx_token",
}
def map_special_auth_params(self, non_default_params: dict, optional_params: dict):
mapped_params = self.get_mapped_special_auth_params()
for param, value in non_default_params.items():
if param in mapped_params:
optional_params[mapped_params[param]] = value
return optional_params
def get_eu_regions(self) -> List[str]:
"""
Source: https://www.ibm.com/docs/en/watsonx/saas?topic=integrations-regional-availability
"""
return [
"eu-de",
"eu-gb",
]
def get_us_regions(self) -> List[str]:
"""
Source: https://www.ibm.com/docs/en/watsonx/saas?topic=integrations-regional-availability
"""
return [
"us-south",
]
def transform_request(
self,
model: str,
messages: List[AllMessageValues],
optional_params: Dict,
litellm_params: Dict,
headers: Dict,
) -> Dict:
provider = model.split("/")[0]
prompt = convert_watsonx_messages_to_prompt(
model=model,
messages=messages,
provider=provider,
custom_prompt_dict={},
)
extra_body_params = optional_params.pop("extra_body", {})
optional_params.update(extra_body_params)
watsonx_api_params = _get_api_params(params=optional_params)
watsonx_auth_payload = self._prepare_payload(
model=model,
api_params=watsonx_api_params,
)
# init the payload to the text generation call
payload = {
"input": prompt,
"moderations": optional_params.pop("moderations", {}),
"parameters": optional_params,
**watsonx_auth_payload,
}
return payload
def transform_response(
self,
model: str,
raw_response: httpx.Response,
model_response: ModelResponse,
logging_obj: LiteLLMLoggingObj,
request_data: Dict,
messages: List[AllMessageValues],
optional_params: Dict,
litellm_params: Dict,
encoding: str,
api_key: Optional[str] = None,
json_mode: Optional[bool] = None,
) -> ModelResponse:
## LOGGING
logging_obj.post_call(
input=messages,
api_key="",
original_response=raw_response.text,
)
json_resp = raw_response.json()
if "results" not in json_resp:
raise WatsonXAIError(
status_code=500,
message=f"Error: Invalid response from Watsonx.ai API: {json_resp}",
)
if model_response is None:
model_response = ModelResponse(model=json_resp.get("model_id", None))
generated_text = json_resp["results"][0]["generated_text"]
prompt_tokens = json_resp["results"][0]["input_token_count"]
completion_tokens = json_resp["results"][0]["generated_token_count"]
model_response.choices[0].message.content = generated_text # type: ignore
model_response.choices[0].finish_reason = map_finish_reason(
json_resp["results"][0]["stop_reason"]
)
if json_resp.get("created_at"):
model_response.created = int(
datetime.fromisoformat(json_resp["created_at"]).timestamp()
)
else:
model_response.created = int(time.time())
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
setattr(model_response, "usage", usage)
return model_response
def get_complete_url(
self,
api_base: str,
model: str,
optional_params: dict,
stream: Optional[bool] = None,
) -> str:
url = self._get_base_url(api_base=api_base)
if model.startswith("deployment/"):
# deployment models are passed in as 'deployment/<deployment_id>'
deployment_id = "/".join(model.split("/")[1:])
endpoint = (
WatsonXAIEndpoint.DEPLOYMENT_TEXT_GENERATION_STREAM.value
if stream
else WatsonXAIEndpoint.DEPLOYMENT_TEXT_GENERATION.value
)
endpoint = endpoint.format(deployment_id=deployment_id)
else:
endpoint = (
WatsonXAIEndpoint.TEXT_GENERATION_STREAM
if stream
else WatsonXAIEndpoint.TEXT_GENERATION
)
url = url.rstrip("/") + endpoint
## add api version
url = self._add_api_version_to_url(
url=url, api_version=optional_params.pop("api_version", None)
)
return url
def get_model_response_iterator(
self,
streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
sync_stream: bool,
json_mode: Optional[bool] = False,
):
return WatsonxTextCompletionResponseIterator(
streaming_response=streaming_response,
sync_stream=sync_stream,
json_mode=json_mode,
)
class WatsonxTextCompletionResponseIterator(BaseModelResponseIterator):
# def _handle_string_chunk(self, str_line: str) -> GenericStreamingChunk:
# return self.chunk_parser(json.loads(str_line))
def chunk_parser(self, chunk: dict) -> GenericStreamingChunk:
try:
results = chunk.get("results", [])
if len(results) > 0:
text = results[0].get("generated_text", "")
finish_reason = results[0].get("stop_reason")
is_finished = finish_reason != "not_finished"
return GenericStreamingChunk(
text=text,
is_finished=is_finished,
finish_reason=finish_reason,
usage=ChatCompletionUsageBlock(
prompt_tokens=results[0].get("input_token_count", 0),
completion_tokens=results[0].get("generated_token_count", 0),
total_tokens=results[0].get("input_token_count", 0)
+ results[0].get("generated_token_count", 0),
),
)
return GenericStreamingChunk(
text="",
is_finished=False,
finish_reason="stop",
usage=None,
)
except Exception as e:
raise e