mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
* remove unused imports * fix AmazonConverseConfig * fix test * fix import * ruff check fixes * test fixes * fix testing * fix imports
392 lines
14 KiB
Python
392 lines
14 KiB
Python
"""
|
|
Send logs to Argilla for annotation
|
|
"""
|
|
|
|
import asyncio
|
|
import json
|
|
import os
|
|
import random
|
|
import types
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
import httpx
|
|
from pydantic import BaseModel # type: ignore
|
|
|
|
import litellm
|
|
from litellm._logging import verbose_logger
|
|
from litellm.integrations.custom_batch_logger import CustomBatchLogger
|
|
from litellm.integrations.custom_logger import CustomLogger
|
|
from litellm.llms.custom_httpx.http_handler import (
|
|
get_async_httpx_client,
|
|
httpxSpecialProvider,
|
|
)
|
|
from litellm.types.integrations.argilla import (
|
|
SUPPORTED_PAYLOAD_FIELDS,
|
|
ArgillaCredentialsObject,
|
|
ArgillaItem,
|
|
)
|
|
from litellm.types.utils import StandardLoggingPayload
|
|
|
|
|
|
def is_serializable(value):
|
|
non_serializable_types = (
|
|
types.CoroutineType,
|
|
types.FunctionType,
|
|
types.GeneratorType,
|
|
BaseModel,
|
|
)
|
|
return not isinstance(value, non_serializable_types)
|
|
|
|
|
|
class ArgillaLogger(CustomBatchLogger):
|
|
def __init__(
|
|
self,
|
|
argilla_api_key: Optional[str] = None,
|
|
argilla_dataset_name: Optional[str] = None,
|
|
argilla_base_url: Optional[str] = None,
|
|
**kwargs,
|
|
):
|
|
if litellm.argilla_transformation_object is None:
|
|
raise Exception(
|
|
"'litellm.argilla_transformation_object' is required, to log your payload to Argilla."
|
|
)
|
|
self.validate_argilla_transformation_object(
|
|
litellm.argilla_transformation_object
|
|
)
|
|
self.argilla_transformation_object = litellm.argilla_transformation_object
|
|
self.default_credentials = self.get_credentials_from_env(
|
|
argilla_api_key=argilla_api_key,
|
|
argilla_dataset_name=argilla_dataset_name,
|
|
argilla_base_url=argilla_base_url,
|
|
)
|
|
self.sampling_rate: float = (
|
|
float(os.getenv("ARGILLA_SAMPLING_RATE")) # type: ignore
|
|
if os.getenv("ARGILLA_SAMPLING_RATE") is not None
|
|
and os.getenv("ARGILLA_SAMPLING_RATE").strip().isdigit() # type: ignore
|
|
else 1.0
|
|
)
|
|
|
|
self.async_httpx_client = get_async_httpx_client(
|
|
llm_provider=httpxSpecialProvider.LoggingCallback
|
|
)
|
|
_batch_size = (
|
|
os.getenv("ARGILLA_BATCH_SIZE", None) or litellm.argilla_batch_size
|
|
)
|
|
if _batch_size:
|
|
self.batch_size = int(_batch_size)
|
|
asyncio.create_task(self.periodic_flush())
|
|
self.flush_lock = asyncio.Lock()
|
|
super().__init__(**kwargs, flush_lock=self.flush_lock)
|
|
|
|
def validate_argilla_transformation_object(
|
|
self, argilla_transformation_object: Dict[str, Any]
|
|
):
|
|
if not isinstance(argilla_transformation_object, dict):
|
|
raise Exception(
|
|
"'argilla_transformation_object' must be a dictionary, to log your payload to Argilla."
|
|
)
|
|
|
|
for v in argilla_transformation_object.values():
|
|
if v not in SUPPORTED_PAYLOAD_FIELDS:
|
|
raise Exception(
|
|
f"All values in argilla_transformation_object must be a key in SUPPORTED_PAYLOAD_FIELDS, {v} is not a valid key."
|
|
)
|
|
|
|
def get_credentials_from_env(
|
|
self,
|
|
argilla_api_key: Optional[str],
|
|
argilla_dataset_name: Optional[str],
|
|
argilla_base_url: Optional[str],
|
|
) -> ArgillaCredentialsObject:
|
|
|
|
_credentials_api_key = argilla_api_key or os.getenv("ARGILLA_API_KEY")
|
|
if _credentials_api_key is None:
|
|
raise Exception("Invalid Argilla API Key given. _credentials_api_key=None.")
|
|
|
|
_credentials_base_url = (
|
|
argilla_base_url
|
|
or os.getenv("ARGILLA_BASE_URL")
|
|
or "http://localhost:6900/"
|
|
)
|
|
if _credentials_base_url is None:
|
|
raise Exception(
|
|
"Invalid Argilla Base URL given. _credentials_base_url=None."
|
|
)
|
|
|
|
_credentials_dataset_name = (
|
|
argilla_dataset_name
|
|
or os.getenv("ARGILLA_DATASET_NAME")
|
|
or "litellm-completion"
|
|
)
|
|
if _credentials_dataset_name is None:
|
|
raise Exception("Invalid Argilla Dataset give. Value=None.")
|
|
else:
|
|
dataset_response = litellm.module_level_client.get(
|
|
url=f"{_credentials_base_url}/api/v1/me/datasets?name={_credentials_dataset_name}",
|
|
headers={"X-Argilla-Api-Key": _credentials_api_key},
|
|
)
|
|
json_response = dataset_response.json()
|
|
if (
|
|
"items" in json_response
|
|
and isinstance(json_response["items"], list)
|
|
and len(json_response["items"]) > 0
|
|
):
|
|
_credentials_dataset_name = json_response["items"][0]["id"]
|
|
|
|
return ArgillaCredentialsObject(
|
|
ARGILLA_API_KEY=_credentials_api_key,
|
|
ARGILLA_BASE_URL=_credentials_base_url,
|
|
ARGILLA_DATASET_NAME=_credentials_dataset_name,
|
|
)
|
|
|
|
def get_chat_messages(
|
|
self, payload: StandardLoggingPayload
|
|
) -> List[Dict[str, Any]]:
|
|
payload_messages = payload.get("messages", None)
|
|
|
|
if payload_messages is None:
|
|
raise Exception("No chat messages found in payload.")
|
|
|
|
if (
|
|
isinstance(payload_messages, list)
|
|
and len(payload_messages) > 0
|
|
and isinstance(payload_messages[0], dict)
|
|
):
|
|
return payload_messages
|
|
elif isinstance(payload_messages, dict):
|
|
return [payload_messages]
|
|
else:
|
|
raise Exception(f"Invalid chat messages format: {payload_messages}")
|
|
|
|
def get_str_response(self, payload: StandardLoggingPayload) -> str:
|
|
response = payload["response"]
|
|
|
|
if response is None:
|
|
raise Exception("No response found in payload.")
|
|
|
|
if isinstance(response, str):
|
|
return response
|
|
elif isinstance(response, dict):
|
|
return (
|
|
response.get("choices", [{}])[0].get("message", {}).get("content", "")
|
|
)
|
|
else:
|
|
raise Exception(f"Invalid response format: {response}")
|
|
|
|
def _prepare_log_data(
|
|
self, kwargs, response_obj, start_time, end_time
|
|
) -> Optional[ArgillaItem]:
|
|
try:
|
|
# Ensure everything in the payload is converted to str
|
|
payload: Optional[StandardLoggingPayload] = kwargs.get(
|
|
"standard_logging_object", None
|
|
)
|
|
|
|
if payload is None:
|
|
raise Exception("Error logging request payload. Payload=none.")
|
|
|
|
argilla_message = self.get_chat_messages(payload)
|
|
argilla_response = self.get_str_response(payload)
|
|
argilla_item: ArgillaItem = {"fields": {}}
|
|
for k, v in self.argilla_transformation_object.items():
|
|
if v == "messages":
|
|
argilla_item["fields"][k] = argilla_message
|
|
elif v == "response":
|
|
argilla_item["fields"][k] = argilla_response
|
|
else:
|
|
argilla_item["fields"][k] = payload.get(v, None)
|
|
|
|
return argilla_item
|
|
except Exception:
|
|
raise
|
|
|
|
def _send_batch(self):
|
|
if not self.log_queue:
|
|
return
|
|
|
|
argilla_api_base = self.default_credentials["ARGILLA_BASE_URL"]
|
|
argilla_dataset_name = self.default_credentials["ARGILLA_DATASET_NAME"]
|
|
|
|
url = f"{argilla_api_base}/api/v1/datasets/{argilla_dataset_name}/records/bulk"
|
|
|
|
argilla_api_key = self.default_credentials["ARGILLA_API_KEY"]
|
|
|
|
headers = {"X-Argilla-Api-Key": argilla_api_key}
|
|
|
|
try:
|
|
response = litellm.module_level_client.post(
|
|
url=url,
|
|
json=self.log_queue,
|
|
headers=headers,
|
|
)
|
|
|
|
if response.status_code >= 300:
|
|
verbose_logger.error(
|
|
f"Argilla Error: {response.status_code} - {response.text}"
|
|
)
|
|
else:
|
|
verbose_logger.debug(
|
|
f"Batch of {len(self.log_queue)} runs successfully created"
|
|
)
|
|
|
|
self.log_queue.clear()
|
|
except Exception:
|
|
verbose_logger.exception("Argilla Layer Error - Error sending batch.")
|
|
|
|
def log_success_event(self, kwargs, response_obj, start_time, end_time):
|
|
try:
|
|
sampling_rate = (
|
|
float(os.getenv("LANGSMITH_SAMPLING_RATE")) # type: ignore
|
|
if os.getenv("LANGSMITH_SAMPLING_RATE") is not None
|
|
and os.getenv("LANGSMITH_SAMPLING_RATE").strip().isdigit() # type: ignore
|
|
else 1.0
|
|
)
|
|
random_sample = random.random()
|
|
if random_sample > sampling_rate:
|
|
verbose_logger.info(
|
|
"Skipping Langsmith logging. Sampling rate={}, random_sample={}".format(
|
|
sampling_rate, random_sample
|
|
)
|
|
)
|
|
return # Skip logging
|
|
verbose_logger.debug(
|
|
"Langsmith Sync Layer Logging - kwargs: %s, response_obj: %s",
|
|
kwargs,
|
|
response_obj,
|
|
)
|
|
data = self._prepare_log_data(kwargs, response_obj, start_time, end_time)
|
|
if data is None:
|
|
return
|
|
|
|
self.log_queue.append(data)
|
|
verbose_logger.debug(
|
|
f"Langsmith, event added to queue. Will flush in {self.flush_interval} seconds..."
|
|
)
|
|
|
|
if len(self.log_queue) >= self.batch_size:
|
|
self._send_batch()
|
|
|
|
except Exception:
|
|
verbose_logger.exception("Langsmith Layer Error - log_success_event error")
|
|
|
|
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
|
|
try:
|
|
sampling_rate = self.sampling_rate
|
|
random_sample = random.random()
|
|
if random_sample > sampling_rate:
|
|
verbose_logger.info(
|
|
"Skipping Langsmith logging. Sampling rate={}, random_sample={}".format(
|
|
sampling_rate, random_sample
|
|
)
|
|
)
|
|
return # Skip logging
|
|
verbose_logger.debug(
|
|
"Langsmith Async Layer Logging - kwargs: %s, response_obj: %s",
|
|
kwargs,
|
|
response_obj,
|
|
)
|
|
payload: Optional[StandardLoggingPayload] = kwargs.get(
|
|
"standard_logging_object", None
|
|
)
|
|
|
|
data = self._prepare_log_data(kwargs, response_obj, start_time, end_time)
|
|
|
|
## ALLOW CUSTOM LOGGERS TO MODIFY / FILTER DATA BEFORE LOGGING
|
|
for callback in litellm.callbacks:
|
|
if isinstance(callback, CustomLogger):
|
|
try:
|
|
if data is None:
|
|
break
|
|
data = await callback.async_dataset_hook(data, payload)
|
|
except NotImplementedError:
|
|
pass
|
|
|
|
if data is None:
|
|
return
|
|
|
|
self.log_queue.append(data)
|
|
verbose_logger.debug(
|
|
"Langsmith logging: queue length %s, batch size %s",
|
|
len(self.log_queue),
|
|
self.batch_size,
|
|
)
|
|
if len(self.log_queue) >= self.batch_size:
|
|
await self.flush_queue()
|
|
except Exception:
|
|
verbose_logger.exception(
|
|
"Argilla Layer Error - error logging async success event."
|
|
)
|
|
|
|
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
|
sampling_rate = self.sampling_rate
|
|
random_sample = random.random()
|
|
if random_sample > sampling_rate:
|
|
verbose_logger.info(
|
|
"Skipping Langsmith logging. Sampling rate={}, random_sample={}".format(
|
|
sampling_rate, random_sample
|
|
)
|
|
)
|
|
return # Skip logging
|
|
verbose_logger.info("Langsmith Failure Event Logging!")
|
|
try:
|
|
data = self._prepare_log_data(kwargs, response_obj, start_time, end_time)
|
|
self.log_queue.append(data)
|
|
verbose_logger.debug(
|
|
"Langsmith logging: queue length %s, batch size %s",
|
|
len(self.log_queue),
|
|
self.batch_size,
|
|
)
|
|
if len(self.log_queue) >= self.batch_size:
|
|
await self.flush_queue()
|
|
except Exception:
|
|
verbose_logger.exception(
|
|
"Langsmith Layer Error - error logging async failure event."
|
|
)
|
|
|
|
async def async_send_batch(self):
|
|
"""
|
|
sends runs to /batch endpoint
|
|
|
|
Sends runs from self.log_queue
|
|
|
|
Returns: None
|
|
|
|
Raises: Does not raise an exception, will only verbose_logger.exception()
|
|
"""
|
|
if not self.log_queue:
|
|
return
|
|
|
|
argilla_api_base = self.default_credentials["ARGILLA_BASE_URL"]
|
|
argilla_dataset_name = self.default_credentials["ARGILLA_DATASET_NAME"]
|
|
|
|
url = f"{argilla_api_base}/api/v1/datasets/{argilla_dataset_name}/records/bulk"
|
|
|
|
argilla_api_key = self.default_credentials["ARGILLA_API_KEY"]
|
|
|
|
headers = {"X-Argilla-Api-Key": argilla_api_key}
|
|
|
|
try:
|
|
response = await self.async_httpx_client.put(
|
|
url=url,
|
|
data=json.dumps(
|
|
{
|
|
"items": self.log_queue,
|
|
}
|
|
),
|
|
headers=headers,
|
|
timeout=60000,
|
|
)
|
|
response.raise_for_status()
|
|
|
|
if response.status_code >= 300:
|
|
verbose_logger.error(
|
|
f"Argilla Error: {response.status_code} - {response.text}"
|
|
)
|
|
else:
|
|
verbose_logger.debug(
|
|
"Batch of %s runs successfully created", len(self.log_queue)
|
|
)
|
|
except httpx.HTTPStatusError:
|
|
verbose_logger.exception("Argilla HTTP Error")
|
|
except Exception:
|
|
verbose_logger.exception("Argilla Layer Error")
|