litellm-mirror/litellm/llms/aleph_alpha.py

126 lines
4.4 KiB
Python

import os
import json
from enum import Enum
import requests
import time
from typing import Callable
from litellm.utils import ModelResponse
class AlephAlphaError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
def validate_environment(api_key):
headers = {
"accept": "application/json",
"content-type": "application/json",
}
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
return headers
def completion(
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
api_key,
logging_obj,
optional_params=None,
litellm_params=None,
logger_fn=None,
default_max_tokens_to_sample=None,
):
headers = validate_environment(api_key)
completion_url = "https://api.aleph-alpha.com/complete"
model = model
prompt = ""
if "control" in model: # follow the ###Instruction / ###Response format
for idx, message in enumerate(messages):
if "role" in message:
if idx == 0: # set first message as instruction (required), let later user messages be input
prompt += f"###Instruction: {message['content']}"
else:
if message["role"] == "system":
prompt += (
f"###Instruction: {message['content']}"
)
elif message["role"] == "user":
prompt += (
f"###Input: {message['content']}"
)
else:
prompt += (
f"###Response: {message['content']}"
)
else:
prompt += f"{message['content']}"
else:
prompt = " ".join(message["content"] for message in messages)
data = {
"model": model,
"prompt": prompt,
"maximum_tokens": optional_params["maximum_tokens"] if "maximum_tokens" in optional_params else default_max_tokens_to_sample, # required input
**optional_params,
}
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=api_key,
additional_args={"complete_input_dict": data},
)
## COMPLETION CALL
response = requests.post(
completion_url, headers=headers, data=json.dumps(data), stream=optional_params["stream"] if "stream" in optional_params else False
)
if "stream" in optional_params and optional_params["stream"] == True:
return response.iter_lines()
else:
## LOGGING
logging_obj.post_call(
input=prompt,
api_key=api_key,
original_response=response.text,
additional_args={"complete_input_dict": data},
)
print_verbose(f"raw model_response: {response.text}")
## RESPONSE OBJECT
completion_response = response.json()
if "error" in completion_response:
raise AlephAlphaError(
message=completion_response["error"],
status_code=response.status_code,
)
else:
try:
model_response["choices"][0]["message"]["content"] = completion_response["completions"][0]["completion"]
model_response.choices[0].finish_reason = completion_response["completions"][0]["finish_reason"]
except:
raise AlephAlphaError(message=json.dumps(completion_response), status_code=response.status_code)
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
prompt_tokens = len(
encoding.encode(prompt)
)
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"]["content"])
)
model_response["created"] = time.time()
model_response["model"] = model
model_response["usage"] = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
}
return model_response
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass