litellm-mirror/cookbook/misc/clickhouse.py
2024-02-26 07:37:44 -08:00

72 lines
1.8 KiB
Python

import clickhouse_connect
import datetime as datetime
import os
client = clickhouse_connect.get_client(
host=os.getenv("CLICKHOUSE_HOST"),
port=int(os.getenv("CLICKHOUSE_PORT")),
username=os.getenv("CLICKHOUSE_USERNAME"),
password=os.getenv("CLICKHOUSE_PASSWORD"),
)
import clickhouse_connect
row1 = [
"ishaan", # request_id
"GET", # call_type
"api_key_123", # api_key
50.00, # spend
1000, # total_tokens
800, # prompt_tokens
200, # completion_tokens
datetime.datetime.now(), # startTime (replace with the actual timestamp)
datetime.datetime.now(), # endTime (replace with the actual timestamp)
"gpt-3.5", # model
"user123", # user
'{"key": "value"}', # metadata (replace with valid JSON)
"True", # cache_hit
"cache_key_123", # cache_key
"tag1,tag2", # request_tags
]
row2 = [
"jaffer", # request_id
"POST", # call_type
"api_key_456", # api_key
30.50, # spend
800, # total_tokens
600, # prompt_tokens
200, # completion_tokens
datetime.datetime.now(), # startTime (replace with the actual timestamp)
datetime.datetime.now(), # endTime (replace with the actual timestamp)
"gpt-4.0", # model
"user456", # user
'{"key": "value"}', # metadata (replace with valid JSON)
"False", # cache_hit
"cache_key_789", # cache_key
"tag3,tag4", # request_tags
]
data = [row1, row2]
resp = client.insert(
"spend_logs",
data,
column_names=[
"request_id",
"call_type",
"api_key",
"spend",
"total_tokens",
"prompt_tokens",
"completion_tokens",
"startTime",
"endTime",
"model",
"user",
"metadata",
"cache_hit",
"cache_key",
"request_tags",
],
)
print(resp)