litellm-mirror/litellm/llms/huggingface/common_utils.py
Ishaan Jaff 7a5dd29fe0
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 46s
(fix) unable to pass input_type parameter to Voyage AI embedding mode (#7276)
* VoyageEmbeddingConfig

* fix voyage logic to get params

* add voyage embedding transformation

* add get_provider_embedding_config

* use BaseEmbeddingConfig

* voyage clean up

* use llm http handler for embedding transformations

* test_voyage_ai_embedding_extra_params

* add voyage async

* test_voyage_ai_embedding_extra_params

* add async for llm http handler

* update BaseLLMEmbeddingTest

* test_voyage_ai_embedding_extra_params

* fix linting

* fix get_provider_embedding_config

* fix anthropic text test

* update location of base/chat/transformation

* fix import path

* fix IBMWatsonXAIConfig
2024-12-17 19:23:49 -08:00

45 lines
1.3 KiB
Python

from typing import Literal, Optional, Union
import httpx
from litellm.llms.base_llm.chat.transformation import BaseLLMException
class HuggingfaceError(BaseLLMException):
def __init__(
self,
status_code: int,
message: str,
headers: Optional[Union[dict, httpx.Headers]] = None,
):
super().__init__(status_code=status_code, message=message, headers=headers)
hf_tasks = Literal[
"text-generation-inference",
"conversational",
"text-classification",
"text-generation",
]
hf_task_list = [
"text-generation-inference",
"conversational",
"text-classification",
"text-generation",
]
def output_parser(generated_text: str):
"""
Parse the output text to remove any special characters. In our current approach we just check for ChatML tokens.
Initial issue that prompted this - https://github.com/BerriAI/litellm/issues/763
"""
chat_template_tokens = ["<|assistant|>", "<|system|>", "<|user|>", "<s>", "</s>"]
for token in chat_template_tokens:
if generated_text.strip().startswith(token):
generated_text = generated_text.replace(token, "", 1)
if generated_text.endswith(token):
generated_text = generated_text[::-1].replace(token[::-1], "", 1)[::-1]
return generated_text