mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 46s
* VoyageEmbeddingConfig * fix voyage logic to get params * add voyage embedding transformation * add get_provider_embedding_config * use BaseEmbeddingConfig * voyage clean up * use llm http handler for embedding transformations * test_voyage_ai_embedding_extra_params * add voyage async * test_voyage_ai_embedding_extra_params * add async for llm http handler * update BaseLLMEmbeddingTest * test_voyage_ai_embedding_extra_params * fix linting * fix get_provider_embedding_config * fix anthropic text test * update location of base/chat/transformation * fix import path * fix IBMWatsonXAIConfig
45 lines
1.3 KiB
Python
45 lines
1.3 KiB
Python
from typing import Literal, Optional, Union
|
|
|
|
import httpx
|
|
|
|
from litellm.llms.base_llm.chat.transformation import BaseLLMException
|
|
|
|
|
|
class HuggingfaceError(BaseLLMException):
|
|
def __init__(
|
|
self,
|
|
status_code: int,
|
|
message: str,
|
|
headers: Optional[Union[dict, httpx.Headers]] = None,
|
|
):
|
|
super().__init__(status_code=status_code, message=message, headers=headers)
|
|
|
|
|
|
hf_tasks = Literal[
|
|
"text-generation-inference",
|
|
"conversational",
|
|
"text-classification",
|
|
"text-generation",
|
|
]
|
|
|
|
hf_task_list = [
|
|
"text-generation-inference",
|
|
"conversational",
|
|
"text-classification",
|
|
"text-generation",
|
|
]
|
|
|
|
|
|
def output_parser(generated_text: str):
|
|
"""
|
|
Parse the output text to remove any special characters. In our current approach we just check for ChatML tokens.
|
|
|
|
Initial issue that prompted this - https://github.com/BerriAI/litellm/issues/763
|
|
"""
|
|
chat_template_tokens = ["<|assistant|>", "<|system|>", "<|user|>", "<s>", "</s>"]
|
|
for token in chat_template_tokens:
|
|
if generated_text.strip().startswith(token):
|
|
generated_text = generated_text.replace(token, "", 1)
|
|
if generated_text.endswith(token):
|
|
generated_text = generated_text[::-1].replace(token[::-1], "", 1)[::-1]
|
|
return generated_text
|