mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
* fix(converse_transformation.py): handle cross region model name when getting openai param support Fixes https://github.com/BerriAI/litellm/issues/6291 * LiteLLM Minor Fixes & Improvements (10/17/2024) (#6293) * fix(ui_sso.py): fix faulty admin only check Fixes https://github.com/BerriAI/litellm/issues/6286 * refactor(sso_helper_utils.py): refactor /sso/callback to use helper utils, covered by unit testing Prevent future regressions * feat(prompt_factory): support 'ensure_alternating_roles' param Closes https://github.com/BerriAI/litellm/issues/6257 * fix(proxy/utils.py): add dailytagspend to expected views * feat(auth_utils.py): support setting regex for clientside auth credentials Fixes https://github.com/BerriAI/litellm/issues/6203 * build(cookbook): add tutorial for mlflow + langchain + litellm proxy tracing * feat(argilla.py): add argilla logging integration Closes https://github.com/BerriAI/litellm/issues/6201 * fix: fix linting errors * fix: fix ruff error * test: fix test * fix: update vertex ai assumption - parts not always guaranteed (#6296) * docs(configs.md): add argila env var to docs * docs(user_keys.md): add regex doc for clientside auth params * docs(argilla.md): add doc on argilla logging * docs(argilla.md): add sampling rate to argilla calls * bump: version 1.49.6 → 1.49.7 * add gpt-4o-audio models to model cost map (#6306) * (code quality) add ruff check PLR0915 for `too-many-statements` (#6309) * ruff add PLR0915 * add noqa for PLR0915 * fix noqa * add # noqa: PLR0915 * # noqa: PLR0915 * # noqa: PLR0915 * # noqa: PLR0915 * add # noqa: PLR0915 * # noqa: PLR0915 * # noqa: PLR0915 * # noqa: PLR0915 * # noqa: PLR0915 * doc fix Turn on / off caching per Key. (#6297) * (feat) Support `audio`, `modalities` params (#6304) * add audio, modalities param * add test for gpt audio models * add get_supported_openai_params for GPT audio models * add supported params for audio * test_audio_output_from_model * bump openai to openai==1.52.0 * bump openai on pyproject * fix audio test * fix test mock_chat_response * handle audio for Message * fix handling audio for OAI compatible API endpoints * fix linting * fix mock dbrx test * (feat) Support audio param in responses streaming (#6312) * add audio, modalities param * add test for gpt audio models * add get_supported_openai_params for GPT audio models * add supported params for audio * test_audio_output_from_model * bump openai to openai==1.52.0 * bump openai on pyproject * fix audio test * fix test mock_chat_response * handle audio for Message * fix handling audio for OAI compatible API endpoints * fix linting * fix mock dbrx test * add audio to Delta * handle model_response.choices.delta.audio * fix linting * build(model_prices_and_context_window.json): add gpt-4o-audio audio token cost tracking * refactor(model_prices_and_context_window.json): refactor 'supports_audio' to be 'supports_audio_input' and 'supports_audio_output' Allows for flag to be used for openai + gemini models (both support audio input) * feat(cost_calculation.py): support cost calc for audio model Closes https://github.com/BerriAI/litellm/issues/6302 * feat(utils.py): expose new `supports_audio_input` and `supports_audio_output` functions Closes https://github.com/BerriAI/litellm/issues/6303 * feat(handle_jwt.py): support single dict list * fix(cost_calculator.py): fix linting errors * fix: fix linting error * fix(cost_calculator): move to using standard openai usage cached tokens value * test: fix test --------- Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
61 lines
2.3 KiB
Python
61 lines
2.3 KiB
Python
"""
|
|
Helper util for handling azure openai-specific cost calculation
|
|
- e.g.: prompt caching
|
|
"""
|
|
|
|
from typing import Optional, Tuple
|
|
|
|
from litellm._logging import verbose_logger
|
|
from litellm.types.utils import Usage
|
|
from litellm.utils import get_model_info
|
|
|
|
|
|
def cost_per_token(
|
|
model: str, usage: Usage, response_time_ms: Optional[float] = 0.0
|
|
) -> Tuple[float, float]:
|
|
"""
|
|
Calculates the cost per token for a given model, prompt tokens, and completion tokens.
|
|
|
|
Input:
|
|
- model: str, the model name without provider prefix
|
|
- usage: LiteLLM Usage block, containing anthropic caching information
|
|
|
|
Returns:
|
|
Tuple[float, float] - prompt_cost_in_usd, completion_cost_in_usd
|
|
"""
|
|
## GET MODEL INFO
|
|
model_info = get_model_info(model=model, custom_llm_provider="azure")
|
|
cached_tokens: Optional[int] = None
|
|
## CALCULATE INPUT COST
|
|
non_cached_text_tokens = usage.prompt_tokens
|
|
if usage.prompt_tokens_details and usage.prompt_tokens_details.cached_tokens:
|
|
cached_tokens = usage.prompt_tokens_details.cached_tokens
|
|
non_cached_text_tokens = non_cached_text_tokens - cached_tokens
|
|
prompt_cost: float = non_cached_text_tokens * model_info["input_cost_per_token"]
|
|
|
|
## CALCULATE OUTPUT COST
|
|
completion_cost: float = (
|
|
usage["completion_tokens"] * model_info["output_cost_per_token"]
|
|
)
|
|
|
|
## Prompt Caching cost calculation
|
|
if model_info.get("cache_read_input_token_cost") is not None and cached_tokens:
|
|
# Note: We read ._cache_read_input_tokens from the Usage - since cost_calculator.py standardizes the cache read tokens on usage._cache_read_input_tokens
|
|
prompt_cost += cached_tokens * (
|
|
model_info.get("cache_read_input_token_cost", 0) or 0
|
|
)
|
|
|
|
## Speech / Audio cost calculation
|
|
if (
|
|
"output_cost_per_second" in model_info
|
|
and model_info["output_cost_per_second"] is not None
|
|
and response_time_ms is not None
|
|
):
|
|
verbose_logger.debug(
|
|
f"For model={model} - output_cost_per_second: {model_info.get('output_cost_per_second')}; response time: {response_time_ms}"
|
|
)
|
|
## COST PER SECOND ##
|
|
prompt_cost = 0
|
|
completion_cost = model_info["output_cost_per_second"] * response_time_ms / 1000
|
|
|
|
return prompt_cost, completion_cost
|