mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
372 lines
13 KiB
Python
372 lines
13 KiB
Python
#### What this does ####
|
|
# On success, logs events to Langsmith
|
|
import asyncio
|
|
import os
|
|
import random
|
|
import time
|
|
import traceback
|
|
import types
|
|
import uuid
|
|
from datetime import datetime, timezone
|
|
from typing import Any, List, Optional, Union
|
|
|
|
import dotenv # type: ignore
|
|
import httpx
|
|
import requests # type: ignore
|
|
from pydantic import BaseModel # type: ignore
|
|
from tenacity import (
|
|
retry,
|
|
retry_if_exception_type,
|
|
stop_after_attempt,
|
|
wait_exponential,
|
|
)
|
|
|
|
import litellm
|
|
from litellm._logging import verbose_logger
|
|
from litellm.integrations.custom_logger import CustomLogger
|
|
from litellm.llms.custom_httpx.http_handler import (
|
|
AsyncHTTPHandler,
|
|
get_async_httpx_client,
|
|
httpxSpecialProvider,
|
|
)
|
|
|
|
|
|
class LangsmithInputs(BaseModel):
|
|
model: Optional[str] = None
|
|
messages: Optional[List[Any]] = None
|
|
stream: Optional[bool] = None
|
|
call_type: Optional[str] = None
|
|
litellm_call_id: Optional[str] = None
|
|
completion_start_time: Optional[datetime] = None
|
|
temperature: Optional[float] = None
|
|
max_tokens: Optional[int] = None
|
|
custom_llm_provider: Optional[str] = None
|
|
input: Optional[List[Any]] = None
|
|
log_event_type: Optional[str] = None
|
|
original_response: Optional[Any] = None
|
|
response_cost: Optional[float] = None
|
|
|
|
# LiteLLM Virtual Key specific fields
|
|
user_api_key: Optional[str] = None
|
|
user_api_key_user_id: Optional[str] = None
|
|
user_api_key_team_alias: Optional[str] = None
|
|
|
|
|
|
def is_serializable(value):
|
|
non_serializable_types = (
|
|
types.CoroutineType,
|
|
types.FunctionType,
|
|
types.GeneratorType,
|
|
BaseModel,
|
|
)
|
|
return not isinstance(value, non_serializable_types)
|
|
|
|
|
|
class LangsmithLogger(CustomLogger):
|
|
def __init__(self):
|
|
self.langsmith_api_key = os.getenv("LANGSMITH_API_KEY")
|
|
self.langsmith_project = os.getenv("LANGSMITH_PROJECT", "litellm-completion")
|
|
self.langsmith_default_run_name = os.getenv(
|
|
"LANGSMITH_DEFAULT_RUN_NAME", "LLMRun"
|
|
)
|
|
self.langsmith_base_url = os.getenv(
|
|
"LANGSMITH_BASE_URL", "https://api.smith.langchain.com"
|
|
)
|
|
self.async_httpx_client = get_async_httpx_client(
|
|
llm_provider=httpxSpecialProvider.LoggingCallback
|
|
)
|
|
|
|
_batch_size = (
|
|
os.getenv("LANGSMITH_BATCH_SIZE", 100) or litellm.langsmith_batch_size
|
|
)
|
|
self.batch_size = int(_batch_size)
|
|
self.log_queue = []
|
|
self.flush_interval = 10 # 5 seconds
|
|
self.last_flush_time = time.time()
|
|
asyncio.create_task(self.periodic_flush())
|
|
|
|
def _prepare_log_data(self, kwargs, response_obj, start_time, end_time):
|
|
import datetime
|
|
from datetime import datetime as dt
|
|
from datetime import timezone
|
|
|
|
metadata = kwargs.get("litellm_params", {}).get("metadata", {}) or {}
|
|
new_metadata = {}
|
|
for key, value in metadata.items():
|
|
if (
|
|
isinstance(value, list)
|
|
or isinstance(value, str)
|
|
or isinstance(value, int)
|
|
or isinstance(value, float)
|
|
):
|
|
new_metadata[key] = value
|
|
elif isinstance(value, BaseModel):
|
|
new_metadata[key] = value.model_dump_json()
|
|
elif isinstance(value, dict):
|
|
for k, v in value.items():
|
|
if isinstance(v, dt):
|
|
value[k] = v.isoformat()
|
|
new_metadata[key] = value
|
|
|
|
metadata = new_metadata
|
|
|
|
kwargs["user_api_key"] = metadata.get("user_api_key", None)
|
|
kwargs["user_api_key_user_id"] = metadata.get("user_api_key_user_id", None)
|
|
kwargs["user_api_key_team_alias"] = metadata.get(
|
|
"user_api_key_team_alias", None
|
|
)
|
|
|
|
project_name = metadata.get("project_name", self.langsmith_project)
|
|
run_name = metadata.get("run_name", self.langsmith_default_run_name)
|
|
run_id = metadata.get("id", None)
|
|
parent_run_id = metadata.get("parent_run_id", None)
|
|
trace_id = metadata.get("trace_id", None)
|
|
session_id = metadata.get("session_id", None)
|
|
dotted_order = metadata.get("dotted_order", None)
|
|
tags = metadata.get("tags", []) or []
|
|
verbose_logger.debug(
|
|
f"Langsmith Logging - project_name: {project_name}, run_name {run_name}"
|
|
)
|
|
|
|
try:
|
|
start_time = kwargs["start_time"].astimezone(timezone.utc).isoformat()
|
|
end_time = kwargs["end_time"].astimezone(timezone.utc).isoformat()
|
|
except:
|
|
start_time = datetime.datetime.utcnow().isoformat()
|
|
end_time = datetime.datetime.utcnow().isoformat()
|
|
|
|
# filter out kwargs to not include any dicts, langsmith throws an erros when trying to log kwargs
|
|
logged_kwargs = LangsmithInputs(**kwargs)
|
|
kwargs = logged_kwargs.model_dump()
|
|
|
|
new_kwargs = {}
|
|
for key in kwargs:
|
|
value = kwargs[key]
|
|
if key == "start_time" or key == "end_time" or value is None:
|
|
pass
|
|
elif key == "original_response" and not isinstance(value, str):
|
|
new_kwargs[key] = str(value)
|
|
elif type(value) == datetime.datetime:
|
|
new_kwargs[key] = value.isoformat()
|
|
elif type(value) != dict and is_serializable(value=value):
|
|
new_kwargs[key] = value
|
|
elif not is_serializable(value=value):
|
|
continue
|
|
|
|
if isinstance(response_obj, BaseModel):
|
|
try:
|
|
response_obj = response_obj.model_dump()
|
|
except:
|
|
response_obj = response_obj.dict() # type: ignore
|
|
|
|
data = {
|
|
"name": run_name,
|
|
"run_type": "llm", # this should always be llm, since litellm always logs llm calls. Langsmith allow us to log "chain"
|
|
"inputs": new_kwargs,
|
|
"outputs": response_obj,
|
|
"session_name": project_name,
|
|
"start_time": start_time,
|
|
"end_time": end_time,
|
|
"tags": tags,
|
|
"extra": metadata,
|
|
}
|
|
|
|
if run_id:
|
|
data["id"] = run_id
|
|
|
|
if parent_run_id:
|
|
data["parent_run_id"] = parent_run_id
|
|
|
|
if trace_id:
|
|
data["trace_id"] = trace_id
|
|
|
|
if session_id:
|
|
data["session_id"] = session_id
|
|
|
|
if dotted_order:
|
|
data["dotted_order"] = dotted_order
|
|
|
|
if "id" not in data or data["id"] is None:
|
|
"""
|
|
for /batch langsmith requires id, trace_id and dotted_order passed as params
|
|
"""
|
|
run_id = uuid.uuid4()
|
|
data["id"] = str(run_id)
|
|
data["trace_id"] = str(run_id)
|
|
data["dotted_order"] = self.make_dot_order(run_id=run_id)
|
|
|
|
verbose_logger.debug("Langsmith Logging data on langsmith: %s", data)
|
|
|
|
return data
|
|
|
|
def _send_batch(self):
|
|
if not self.log_queue:
|
|
return
|
|
|
|
url = f"{self.langsmith_base_url}/runs/batch"
|
|
headers = {"x-api-key": self.langsmith_api_key}
|
|
|
|
try:
|
|
response = requests.post(
|
|
url=url,
|
|
json=self.log_queue,
|
|
headers=headers,
|
|
)
|
|
|
|
if response.status_code >= 300:
|
|
verbose_logger.error(
|
|
f"Langsmith Error: {response.status_code} - {response.text}"
|
|
)
|
|
else:
|
|
verbose_logger.debug(
|
|
f"Batch of {len(self.log_queue)} runs successfully created"
|
|
)
|
|
|
|
self.log_queue.clear()
|
|
except Exception as e:
|
|
verbose_logger.error(f"Langsmith Layer Error - {traceback.format_exc()}")
|
|
|
|
def log_success_event(self, kwargs, response_obj, start_time, end_time):
|
|
try:
|
|
sampling_rate = (
|
|
float(os.getenv("LANGSMITH_SAMPLING_RATE"))
|
|
if os.getenv("LANGSMITH_SAMPLING_RATE") is not None
|
|
and os.getenv("LANGSMITH_SAMPLING_RATE").strip().isdigit()
|
|
else 1.0
|
|
)
|
|
random_sample = random.random()
|
|
if random_sample > sampling_rate:
|
|
verbose_logger.info(
|
|
"Skipping Langsmith logging. Sampling rate={}, random_sample={}".format(
|
|
sampling_rate, random_sample
|
|
)
|
|
)
|
|
return # Skip logging
|
|
verbose_logger.debug(
|
|
"Langsmith Sync Layer Logging - kwargs: %s, response_obj: %s",
|
|
kwargs,
|
|
response_obj,
|
|
)
|
|
data = self._prepare_log_data(kwargs, response_obj, start_time, end_time)
|
|
self.log_queue.append(data)
|
|
verbose_logger.debug(
|
|
f"Langsmith, event added to queue. Will flush in {self.flush_interval}seconds..."
|
|
)
|
|
|
|
if len(self.log_queue) >= self.batch_size:
|
|
self._send_batch()
|
|
|
|
except:
|
|
verbose_logger.error(f"Langsmith Layer Error - {traceback.format_exc()}")
|
|
|
|
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
|
|
try:
|
|
sampling_rate = (
|
|
float(os.getenv("LANGSMITH_SAMPLING_RATE"))
|
|
if os.getenv("LANGSMITH_SAMPLING_RATE") is not None
|
|
and os.getenv("LANGSMITH_SAMPLING_RATE").strip().isdigit()
|
|
else 1.0
|
|
)
|
|
random_sample = random.random()
|
|
if random_sample > sampling_rate:
|
|
verbose_logger.info(
|
|
"Skipping Langsmith logging. Sampling rate={}, random_sample={}".format(
|
|
sampling_rate, random_sample
|
|
)
|
|
)
|
|
return # Skip logging
|
|
verbose_logger.debug(
|
|
"Langsmith Async Layer Logging - kwargs: %s, response_obj: %s",
|
|
kwargs,
|
|
response_obj,
|
|
)
|
|
data = self._prepare_log_data(kwargs, response_obj, start_time, end_time)
|
|
self.log_queue.append(data)
|
|
verbose_logger.debug(
|
|
"Langsmith logging: queue length",
|
|
len(self.log_queue),
|
|
"batch size",
|
|
self.batch_size,
|
|
)
|
|
if len(self.log_queue) >= self.batch_size:
|
|
await self._async_send_batch()
|
|
self.log_queue.clear()
|
|
self.last_flush_time = time.time()
|
|
except:
|
|
verbose_logger.error(f"Langsmith Layer Error - {traceback.format_exc()}")
|
|
|
|
@retry(
|
|
stop=stop_after_attempt(3),
|
|
wait=wait_exponential(multiplier=1, min=4, max=10),
|
|
retry=retry_if_exception_type((httpx.HTTPStatusError, Exception)),
|
|
)
|
|
async def _async_send_batch(self):
|
|
"""
|
|
sends runs to /batch endpoint
|
|
|
|
Sends runs from self.log_queue
|
|
|
|
Returns: None
|
|
|
|
Raises: Does not raise an exception, will only verbose_logger.exception()
|
|
"""
|
|
import json
|
|
|
|
if not self.log_queue:
|
|
return
|
|
|
|
url = f"{self.langsmith_base_url}/runs/batch"
|
|
headers = {"x-api-key": self.langsmith_api_key}
|
|
|
|
try:
|
|
response = await self.async_httpx_client.post(
|
|
url=url,
|
|
json={
|
|
"post": self.log_queue,
|
|
},
|
|
headers=headers,
|
|
)
|
|
response.raise_for_status()
|
|
|
|
if response.status_code >= 300:
|
|
verbose_logger.error(
|
|
f"Langsmith Error: {response.status_code} - {response.text}"
|
|
)
|
|
else:
|
|
verbose_logger.debug(
|
|
f"Batch of {len(self.log_queue)} runs successfully created"
|
|
)
|
|
except httpx.HTTPStatusError as e:
|
|
verbose_logger.exception(
|
|
f"Langsmith HTTP Error: {e.response.status_code} - {e.response.text}"
|
|
)
|
|
except Exception as e:
|
|
verbose_logger.exception(
|
|
f"Langsmith Layer Error - {traceback.format_exc()}"
|
|
)
|
|
|
|
def get_run_by_id(self, run_id):
|
|
|
|
url = f"{self.langsmith_base_url}/runs/{run_id}"
|
|
response = requests.get(
|
|
url=url,
|
|
headers={"x-api-key": self.langsmith_api_key},
|
|
)
|
|
|
|
return response.json()
|
|
|
|
def make_dot_order(self, run_id: str):
|
|
st = datetime.now(timezone.utc)
|
|
id_ = run_id
|
|
return st.strftime("%Y%m%dT%H%M%S%fZ") + str(id_)
|
|
|
|
async def periodic_flush(self):
|
|
while True:
|
|
await asyncio.sleep(self.flush_interval)
|
|
if self.log_queue and len(self.log_queue) > 0:
|
|
verbose_logger.debug(
|
|
f"Langsmith: Waited for {self.flush_interval} seconds. flushing in memory logs to langsmith"
|
|
)
|
|
await self._async_send_batch()
|
|
self.log_queue.clear()
|
|
self.last_flush_time = time.time()
|