litellm-mirror/litellm/llms/openai_like/embedding/handler.py
Krish Dholakia 7e5085dc7b
Litellm dev 11 21 2024 (#6837)
* Fix Vertex AI function calling invoke: use JSON format instead of protobuf text format. (#6702)

* test: test tool_call conversion when arguments is empty dict

Fixes https://github.com/BerriAI/litellm/issues/6833

* fix(openai_like/handler.py): return more descriptive error message

Fixes https://github.com/BerriAI/litellm/issues/6812

* test: skip overloaded model

* docs(anthropic.md): update anthropic docs to show how to route to any new model

* feat(groq/): fake stream when 'response_format' param is passed

Groq doesn't support streaming when response_format is set

* feat(groq/): add response_format support for groq

Closes https://github.com/BerriAI/litellm/issues/6845

* fix(o1_handler.py): remove fake streaming for o1

Closes https://github.com/BerriAI/litellm/issues/6801

* build(model_prices_and_context_window.json): add groq llama3.2b model pricing

Closes https://github.com/BerriAI/litellm/issues/6807

* fix(utils.py): fix handling ollama response format param

Fixes https://github.com/BerriAI/litellm/issues/6848#issuecomment-2491215485

* docs(sidebars.js): refactor chat endpoint placement

* fix: fix linting errors

* test: fix test

* test: fix test

* fix(openai_like/handler): handle max retries

* fix(streaming_handler.py): fix streaming check for openai-compatible providers

* test: update test

* test: correctly handle model is overloaded error

* test: update test

* test: fix test

* test: mark flaky test

---------

Co-authored-by: Guowang Li <Guowang@users.noreply.github.com>
2024-11-22 01:53:52 +05:30

159 lines
5 KiB
Python

# What is this?
## Handler file for OpenAI-like endpoints.
## Allows jina ai embedding calls - which don't allow 'encoding_format' in payload.
import copy
import json
import os
import time
import types
from enum import Enum
from functools import partial
from typing import Any, Callable, List, Literal, Optional, Tuple, Union
import httpx # type: ignore
import requests # type: ignore
import litellm
from litellm.litellm_core_utils.core_helpers import map_finish_reason
from litellm.llms.custom_httpx.http_handler import (
AsyncHTTPHandler,
HTTPHandler,
get_async_httpx_client,
)
from litellm.utils import EmbeddingResponse
from ..common_utils import OpenAILikeBase, OpenAILikeError
class OpenAILikeEmbeddingHandler(OpenAILikeBase):
def __init__(self, **kwargs):
pass
async def aembedding(
self,
input: list,
data: dict,
model_response: EmbeddingResponse,
timeout: float,
api_key: str,
api_base: str,
logging_obj,
headers: dict,
client=None,
) -> EmbeddingResponse:
response = None
try:
if client is None or isinstance(client, AsyncHTTPHandler):
self.async_client = AsyncHTTPHandler(timeout=timeout) # type: ignore
else:
self.async_client = client
try:
response = await self.async_client.post(
api_base,
headers=headers,
data=json.dumps(data),
) # type: ignore
response.raise_for_status()
response_json = response.json()
except httpx.HTTPStatusError as e:
raise OpenAILikeError(
status_code=e.response.status_code,
message=e.response.text if e.response else str(e),
)
except httpx.TimeoutException:
raise OpenAILikeError(
status_code=408, message="Timeout error occurred."
)
except Exception as e:
raise OpenAILikeError(status_code=500, message=str(e))
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=response_json,
)
return EmbeddingResponse(**response_json)
except Exception as e:
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
original_response=str(e),
)
raise e
def embedding(
self,
model: str,
input: list,
timeout: float,
logging_obj,
api_key: Optional[str],
api_base: Optional[str],
optional_params: dict,
model_response: Optional[litellm.utils.EmbeddingResponse] = None,
client=None,
aembedding=None,
custom_endpoint: Optional[bool] = None,
headers: Optional[dict] = None,
) -> EmbeddingResponse:
api_base, headers = self._validate_environment(
api_base=api_base,
api_key=api_key,
endpoint_type="embeddings",
headers=headers,
custom_endpoint=custom_endpoint,
)
model = model
data = {"model": model, "input": input, **optional_params}
## LOGGING
logging_obj.pre_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data, "api_base": api_base},
)
if aembedding is True:
return self.aembedding(data=data, input=input, logging_obj=logging_obj, model_response=model_response, api_base=api_base, api_key=api_key, timeout=timeout, client=client, headers=headers) # type: ignore
if client is None or isinstance(client, AsyncHTTPHandler):
self.client = HTTPHandler(timeout=timeout) # type: ignore
else:
self.client = client
## EMBEDDING CALL
try:
response = self.client.post(
api_base,
headers=headers,
data=json.dumps(data),
) # type: ignore
response.raise_for_status() # type: ignore
response_json = response.json() # type: ignore
except httpx.HTTPStatusError as e:
raise OpenAILikeError(
status_code=e.response.status_code,
message=e.response.text,
)
except httpx.TimeoutException:
raise OpenAILikeError(status_code=408, message="Timeout error occurred.")
except Exception as e:
raise OpenAILikeError(status_code=500, message=str(e))
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=response_json,
)
return litellm.EmbeddingResponse(**response_json)