litellm-mirror/tests/test_openai_batches_endpoint.py
Ishaan Jaff 84db69d4c4
(feat) add Vertex Batches API support in OpenAI format (#7032)
* working request

* working transform

* working request

* transform vertex batch response

* add _async_create_batch

* move gcs functions to base

* fix _get_content_from_openai_file

* transform_openai_file_content_to_vertex_ai_file_content

* fix transform vertex gcs bucket upload to OAI files format

* working e2e test

* _get_gcs_object_name

* fix linting

* add doc string

* fix transform_gcs_bucket_response_to_openai_file_object

* use vertex for batch endpoints

* add batches support for vertex

* test_vertex_batches_endpoint

* test_vertex_batch_prediction

* fix gcs bucket base auth

* docs clean up batches

* docs Batch API

* docs vertex batches api

* test_get_gcs_logging_config_without_service_account

* undo change

* fix vertex md

* test_get_gcs_logging_config_without_service_account

* ci/cd run again
2024-12-04 19:40:28 -08:00

121 lines
4.1 KiB
Python

# What this tests ?
## Tests /batches endpoints
import pytest
import asyncio
import aiohttp, openai
from openai import OpenAI, AsyncOpenAI
from typing import Optional, List, Union
from test_openai_files_endpoints import upload_file, delete_file
BASE_URL = "http://localhost:4000" # Replace with your actual base URL
API_KEY = "sk-1234" # Replace with your actual API key
async def create_batch(session, input_file_id, endpoint, completion_window):
url = f"{BASE_URL}/v1/batches"
headers = {"Authorization": f"Bearer {API_KEY}", "Content-Type": "application/json"}
payload = {
"input_file_id": input_file_id,
"endpoint": endpoint,
"completion_window": completion_window,
}
async with session.post(url, headers=headers, json=payload) as response:
assert response.status == 200, f"Expected status 200, got {response.status}"
result = await response.json()
print(f"Batch creation successful. Batch ID: {result.get('id', 'N/A')}")
return result
async def get_batch_by_id(session, batch_id):
url = f"{BASE_URL}/v1/batches/{batch_id}"
headers = {"Authorization": f"Bearer {API_KEY}"}
async with session.get(url, headers=headers) as response:
if response.status == 200:
result = await response.json()
return result
else:
print(f"Error: Failed to get batch. Status code: {response.status}")
return None
async def list_batches(session):
url = f"{BASE_URL}/v1/batches"
headers = {"Authorization": f"Bearer {API_KEY}"}
async with session.get(url, headers=headers) as response:
if response.status == 200:
result = await response.json()
return result
else:
print(f"Error: Failed to get batch. Status code: {response.status}")
return None
@pytest.mark.asyncio
async def test_batches_operations():
async with aiohttp.ClientSession() as session:
# Test file upload and get file_id
file_id = await upload_file(session, purpose="batch")
create_batch_response = await create_batch(
session, file_id, "/v1/chat/completions", "24h"
)
batch_id = create_batch_response.get("id")
assert batch_id is not None
# Test get batch
get_batch_response = await get_batch_by_id(session, batch_id)
print("response from get batch", get_batch_response)
assert get_batch_response["id"] == batch_id
assert get_batch_response["input_file_id"] == file_id
# test LIST Batches
list_batch_response = await list_batches(session)
print("response from list batch", list_batch_response)
assert list_batch_response is not None
assert len(list_batch_response["data"]) > 0
element_0 = list_batch_response["data"][0]
assert element_0["id"] is not None
# Test delete file
await delete_file(session, file_id)
@pytest.mark.skip(reason="Local only test to verify if things work well")
def test_vertex_batches_endpoint():
"""
Test VertexAI Batches Endpoint
"""
import os
oai_client = OpenAI(api_key=API_KEY, base_url=BASE_URL)
file_name = "local_testing/vertex_batch_completions.jsonl"
_current_dir = os.path.dirname(os.path.abspath(__file__))
file_path = os.path.join(_current_dir, file_name)
file_obj = oai_client.files.create(
file=open(file_path, "rb"),
purpose="batch",
extra_body={"custom_llm_provider": "vertex_ai"},
)
print("Response from creating file=", file_obj)
batch_input_file_id = file_obj.id
assert (
batch_input_file_id is not None
), f"Failed to create file, expected a non null file_id but got {batch_input_file_id}"
create_batch_response = oai_client.batches.create(
completion_window="24h",
endpoint="/v1/chat/completions",
input_file_id=batch_input_file_id,
extra_body={"custom_llm_provider": "vertex_ai"},
metadata={"key1": "value1", "key2": "value2"},
)
print("response from create batch", create_batch_response)
pass