litellm-mirror/litellm/tests/test_caching.py
2023-08-28 18:46:26 -07:00

187 lines
6.2 KiB
Python

import sys, os
import traceback
from dotenv import load_dotenv
load_dotenv()
import os
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest
import litellm
from litellm import embedding, completion
from litellm.caching import Cache
# litellm.set_verbose=True
messages = [{"role": "user", "content": "who is ishaan Github? "}]
# comment
# test if response cached
def test_caching():
try:
litellm.caching = True
response1 = completion(model="gpt-3.5-turbo", messages=messages)
response2 = completion(model="gpt-3.5-turbo", messages=messages)
print(f"response1: {response1}")
print(f"response2: {response2}")
litellm.caching = False
if response2 != response1:
print(f"response1: {response1}")
print(f"response2: {response2}")
pytest.fail(f"Error occurred: responses are not equal")
except Exception as e:
litellm.caching = False
pytest.fail(f"Error occurred: {e}")
def test_caching_with_models():
litellm.caching_with_models = True
response1 = completion(model="gpt-3.5-turbo", messages=messages)
response2 = completion(model="gpt-3.5-turbo", messages=messages)
response3 = completion(model="command-nightly", messages=messages)
print(f"response2: {response2}")
print(f"response3: {response3}")
litellm.caching_with_models = False
if response3 == response2:
# if models are different, it should not return cached response
print(f"response2: {response2}")
print(f"response3: {response3}")
pytest.fail(f"Error occurred:")
if response1 != response2:
print(f"response1: {response1}")
print(f"response2: {response2}")
pytest.fail(f"Error occurred:")
# test_caching_with_models()
def test_gpt_cache():
# INIT GPT Cache #
from gptcache import cache
from litellm.gpt_cache import completion
cache.init()
cache.set_openai_key()
messages = [{"role": "user", "content": "what is litellm YC paul graham, partner?"}]
response2 = completion(model="gpt-3.5-turbo", messages=messages)
response3 = completion(model="command-nightly", messages=messages)
print(f"response2: {response2}")
print(f"response3: {response3}")
if response3["choices"] != response2["choices"]:
# if models are different, it should not return cached response
print(f"response2: {response2}")
print(f"response3: {response3}")
pytest.fail(f"Error occurred:")
# test_gpt_cache()
####### Updated Caching as of Aug 28, 2023 ###################
messages = [{"role": "user", "content": "who is ishaan 5222"}]
def test_caching_v2():
try:
litellm.cache = Cache()
response1 = completion(model="gpt-3.5-turbo", messages=messages)
response2 = completion(model="gpt-3.5-turbo", messages=messages)
print(f"response1: {response1}")
print(f"response2: {response2}")
litellm.cache = None # disable cache
if response2 != response1:
print(f"response1: {response1}")
print(f"response2: {response2}")
pytest.fail(f"Error occurred: {e}")
except Exception as e:
print(f"error occurred: {traceback.format_exc()}")
pytest.fail(f"Error occurred: {e}")
# test_caching()
def test_caching_with_models_v2():
messages = [{"role": "user", "content": "who is ishaan CTO of litellm from litellm 2023"}]
litellm.cache = Cache()
print("test2 for caching")
response1 = completion(model="gpt-3.5-turbo", messages=messages)
response2 = completion(model="gpt-3.5-turbo", messages=messages)
response3 = completion(model="command-nightly", messages=messages)
print(f"response1: {response1}")
print(f"response2: {response2}")
print(f"response3: {response3}")
litellm.cache = None
if response3 == response2:
# if models are different, it should not return cached response
print(f"response2: {response2}")
print(f"response3: {response3}")
pytest.fail(f"Error occurred:")
if response1 != response2:
print(f"response1: {response1}")
print(f"response2: {response2}")
pytest.fail(f"Error occurred:")
embedding_large_text = """
small text
""" * 5
# test_caching_with_models()
def test_embedding_caching():
import time
litellm.cache = Cache()
text_to_embed = [embedding_large_text]
start_time = time.time()
embedding1 = embedding(model="text-embedding-ada-002", input=text_to_embed)
end_time = time.time()
print(f"Embedding 1 response time: {end_time - start_time} seconds")
time.sleep(1)
start_time = time.time()
embedding2 = embedding(model="text-embedding-ada-002", input=text_to_embed)
end_time = time.time()
print(f"Embedding 2 response time: {end_time - start_time} seconds")
litellm.cache = None
if embedding2 != embedding1:
print(f"embedding1: {embedding1}")
print(f"embedding2: {embedding2}")
pytest.fail("Error occurred: Embedding caching failed")
# test_embedding_caching()
# # test caching with streaming
# messages = [{"role": "user", "content": "hello gm who are u"}]
# def test_caching_v2_stream():
# try:
# litellm.cache = Cache()
# # litellm.token="ishaan@berri.ai"
# response1 = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
# for chunk in response1:
# #
# pass
# # print("chunk")
# pass
# # response1_id = chunk['id']
# # response2 = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
# # for chunk in response2:
# # #print(chunk)
# # response2_id = chunk['id']
# # print(f"response1: {response1}")
# # print(f"response2: {response2}")
# # litellm.cache = None # disable cache
# # if response2_id != response1_id:
# # print(f"response1: {response1_id}")
# # print(f"response2: {response2_id}")
# # pytest.fail(f"Error occurred: {e}")
# except Exception as e:
# print(f"error occurred: {traceback.format_exc()}")
# pytest.fail(f"Error occurred: {e}")
# test_caching_v2_stream()