litellm-mirror/litellm/tests/test_dynamodb_logs.py
2023-12-15 15:36:29 +05:30

169 lines
5.5 KiB
Python

import sys
import os
import io, asyncio
# import logging
# logging.basicConfig(level=logging.DEBUG)
sys.path.insert(0, os.path.abspath('../..'))
from litellm import completion
import litellm
litellm.num_retries = 3
litellm.success_callback = ["dynamodb"]
import time
import pytest
def test_dynamo_logging_async():
try:
litellm.set_verbose = True
async def _test():
return await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content":"This is a test"}],
max_tokens=100,
temperature=0.7,
user = "ishaan-2"
)
response = asyncio.run(_test())
print(f"response: {response}")
except litellm.Timeout as e:
pass
except Exception as e:
pytest.fail(f"An exception occurred - {e}")
# test_dynamo_logging_async()
def test_dynamo_logging_async_stream():
try:
litellm.set_verbose = True
async def _test():
response = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content":"This is a test"}],
max_tokens=100,
temperature=0.7,
user = "ishaan-2",
stream=True
)
async for chunk in response:
pass
asyncio.run(_test())
except litellm.Timeout as e:
pass
except Exception as e:
pytest.fail(f"An exception occurred - {e}")
# test_dynamo_logging_async_stream()
# @pytest.mark.skip(reason="beta test - checking langfuse output")
# def test_langfuse_logging():
# try:
# pre_langfuse_setup()
# litellm.set_verbose = True
# response = completion(model="claude-instant-1.2",
# messages=[{
# "role": "user",
# "content": "Hi 👋 - i'm claude"
# }],
# max_tokens=10,
# temperature=0.2,
# )
# print(response)
# # time.sleep(5)
# # # check langfuse.log to see if there was a failed response
# # search_logs("langfuse.log")
# except litellm.Timeout as e:
# pass
# except Exception as e:
# pytest.fail(f"An exception occurred - {e}")
# test_langfuse_logging()
# @pytest.mark.skip(reason="beta test - checking langfuse output")
# def test_langfuse_logging_stream():
# try:
# litellm.set_verbose=True
# response = completion(model="anyscale/meta-llama/Llama-2-7b-chat-hf",
# messages=[{
# "role": "user",
# "content": "this is a streaming test for llama2 + langfuse"
# }],
# max_tokens=20,
# temperature=0.2,
# stream=True
# )
# print(response)
# for chunk in response:
# pass
# # print(chunk)
# except litellm.Timeout as e:
# pass
# except Exception as e:
# print(e)
# # test_langfuse_logging_stream()
# @pytest.mark.skip(reason="beta test - checking langfuse output")
# def test_langfuse_logging_custom_generation_name():
# try:
# litellm.set_verbose=True
# response = completion(model="gpt-3.5-turbo",
# messages=[{
# "role": "user",
# "content": "Hi 👋 - i'm claude"
# }],
# max_tokens=10,
# metadata = {
# "langfuse/foo": "bar",
# "langsmith/fizz": "buzz",
# "prompt_hash": "asdf98u0j9131123"
# }
# )
# print(response)
# except litellm.Timeout as e:
# pass
# except Exception as e:
# pytest.fail(f"An exception occurred - {e}")
# print(e)
# # test_langfuse_logging_custom_generation_name()
# @pytest.mark.skip(reason="beta test - checking langfuse output")
# def test_langfuse_logging_function_calling():
# function1 = [
# {
# "name": "get_current_weather",
# "description": "Get the current weather in a given location",
# "parameters": {
# "type": "object",
# "properties": {
# "location": {
# "type": "string",
# "description": "The city and state, e.g. San Francisco, CA",
# },
# "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
# },
# "required": ["location"],
# },
# }
# ]
# try:
# response = completion(model="gpt-3.5-turbo",
# messages=[{
# "role": "user",
# "content": "what's the weather in boston"
# }],
# temperature=0.1,
# functions=function1,
# )
# print(response)
# except litellm.Timeout as e:
# pass
# except Exception as e:
# print(e)
# # test_langfuse_logging_function_calling()