litellm-mirror/litellm/tests/test_proxy_custom_logger.py
2023-12-08 17:25:05 -08:00

182 lines
No EOL
8 KiB
Python

import sys, os
import traceback
from dotenv import load_dotenv
load_dotenv()
import os, io
# this file is to test litellm/proxy
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest
import litellm
from litellm import embedding, completion, completion_cost, Timeout
from litellm import RateLimitError
import importlib, inspect
# test /chat/completion request to the proxy
from fastapi.testclient import TestClient
from fastapi import FastAPI
from litellm.proxy.proxy_server import router, save_worker_config, initialize # Replace with the actual module where your FastAPI router is defined
filepath = os.path.dirname(os.path.abspath(__file__))
config_fp = f"{filepath}/test_configs/test_custom_logger.yaml"
python_file_path = f"{filepath}/test_configs/custom_callbacks.py"
save_worker_config(config=config_fp, model=None, alias=None, api_base=None, api_version=None, debug=False, temperature=None, max_tokens=None, request_timeout=600, max_budget=None, telemetry=False, drop_params=True, add_function_to_prompt=False, headers=None, save=False, use_queue=False)
app = FastAPI()
app.include_router(router) # Include your router in the test app
@app.on_event("startup")
async def wrapper_startup_event():
initialize(config=config_fp, model=None, alias=None, api_base=None, api_version=None, debug=True, temperature=None, max_tokens=None, request_timeout=600, max_budget=None, telemetry=False, drop_params=True, add_function_to_prompt=False, headers=None, save=False, use_queue=False)
# Here you create a fixture that will be used by your tests
# Make sure the fixture returns TestClient(app)
@pytest.fixture(autouse=True)
def client():
with TestClient(app) as client:
yield client
# Your bearer token
token = os.getenv("PROXY_MASTER_KEY")
headers = {
"Authorization": f"Bearer {token}"
}
def test_chat_completion(client):
try:
# Your test data
print("initialized proxy")
# import the initialized custom logger
print(litellm.callbacks)
assert len(litellm.callbacks) == 1 # assert litellm is initialized with 1 callback
my_custom_logger = litellm.callbacks[0]
assert my_custom_logger.async_success == False
test_data = {
"model": "Azure OpenAI GPT-4 Canada",
"messages": [
{
"role": "user",
"content": "hi"
},
],
"max_tokens": 10,
}
response = client.post("/chat/completions", json=test_data, headers=headers)
print("made request", response.status_code, response.text)
assert my_custom_logger.async_success == True # checks if the status of async_success is True, only the async_log_success_event can set this to true
assert my_custom_logger.async_completion_kwargs["model"] == "chatgpt-v-2" # checks if kwargs passed to async_log_success_event are correct
print("\n\n Custom Logger Async Completion args", my_custom_logger.async_completion_kwargs)
litellm_params = my_custom_logger.async_completion_kwargs.get("litellm_params")
config_model_info = litellm_params.get("model_info")
proxy_server_request_object = litellm_params.get("proxy_server_request")
assert config_model_info == {'mode': 'chat', 'input_cost_per_token': 0.0002}
assert proxy_server_request_object == {'url': 'http://testserver/chat/completions', 'method': 'POST', 'headers': {'host': 'testserver', 'accept': '*/*', 'accept-encoding': 'gzip, deflate', 'connection': 'keep-alive', 'user-agent': 'testclient', 'authorization': 'Bearer None', 'content-length': '105', 'content-type': 'application/json'}, 'body': {'model': 'Azure OpenAI GPT-4 Canada', 'messages': [{'role': 'user', 'content': 'hi'}], 'max_tokens': 10}}
result = response.json()
print(f"Received response: {result}")
print("\nPassed /chat/completions with Custom Logger!")
except Exception as e:
pytest.fail("LiteLLM Proxy test failed. Exception", e)
def test_chat_completion_stream(client):
try:
# Your test data
import json
print("initialized proxy")
# import the initialized custom logger
print(litellm.callbacks)
assert len(litellm.callbacks) == 1 # assert litellm is initialized with 1 callback
my_custom_logger = litellm.callbacks[0]
assert my_custom_logger.streaming_response_obj == None # no streaming response obj is set pre call
test_data = {
"model": "Azure OpenAI GPT-4 Canada",
"messages": [
{
"role": "user",
"content": "write 1 line poem about LiteLLM"
},
],
"max_tokens": 40,
"stream": True # streaming call
}
response = client.post("/chat/completions", json=test_data, headers=headers)
print("made request", response.status_code, response.text)
complete_response = ""
for line in response.iter_lines():
if line:
# Process the streaming data line here
print("\n\n Line", line)
print(line)
line = str(line)
json_data = line.replace('data: ', '')
# Parse the JSON string
data = json.loads(json_data)
print("\n\n decode_data", data)
# Access the content of choices[0]['message']['content']
content = data['choices'][0]['delta']['content'] or ""
# Process the content as needed
print("Content:", content)
complete_response+= content
print("\n\nHERE is the complete streaming response string", complete_response)
print("\n\nHERE IS the streaming Response from callback\n\n")
print(my_custom_logger.streaming_response_obj)
streamed_response = my_custom_logger.streaming_response_obj
assert complete_response == streamed_response["choices"][0]["message"]["content"]
except Exception as e:
pytest.fail("LiteLLM Proxy test failed. Exception", e)
def test_embedding(client):
try:
# Your test data
print("initialized proxy")
# import the initialized custom logger
print(litellm.callbacks)
assert len(litellm.callbacks) == 1 # assert litellm is initialized with 1 callback
my_custom_logger = litellm.callbacks[0]
assert my_custom_logger.async_success_embedding == False
test_data = {
"model": "azure-embedding-model",
"input": ["hello"]
}
response = client.post("/embeddings", json=test_data, headers=headers)
print("made request", response.status_code, response.text)
assert my_custom_logger.async_success_embedding == True # checks if the status of async_success is True, only the async_log_success_event can set this to true
assert my_custom_logger.async_embedding_kwargs["model"] == "azure-embedding-model" # checks if kwargs passed to async_log_success_event are correct
kwargs = my_custom_logger.async_embedding_kwargs
litellm_params = kwargs.get("litellm_params")
proxy_server_request = litellm_params.get("proxy_server_request")
model_info = litellm_params.get("model_info")
assert proxy_server_request == {'url': 'http://testserver/embeddings', 'method': 'POST', 'headers': {'host': 'testserver', 'accept': '*/*', 'accept-encoding': 'gzip, deflate', 'connection': 'keep-alive', 'user-agent': 'testclient', 'authorization': 'Bearer None', 'content-length': '54', 'content-type': 'application/json'}, 'body': {'model': 'azure-embedding-model', 'input': ['hello']}}
assert model_info == {'input_cost_per_token': 0.002, 'mode': 'embedding'}
result = response.json()
print(f"Received response: {result}")
except Exception as e:
pytest.fail("LiteLLM Proxy test failed. Exception", e)