litellm-mirror/litellm/tests/test_logging.py
2023-08-18 11:05:05 -07:00

66 lines
1.8 KiB
Python

#### What this tests ####
# This tests error logging (with custom user functions) for the raw `completion` + `embedding` endpoints
import sys, os
import traceback
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm import embedding, completion
litellm.set_verbose = False
score = 0
def logger_fn(model_call_object: dict):
print(f"model call details: {model_call_object}")
user_message = "Hello, how are you?"
messages = [{"content": user_message, "role": "user"}]
# test on openai completion call
try:
response = completion(model="gpt-3.5-turbo", messages=messages, logger_fn=logger_fn)
score += 1
except:
print(f"error occurred: {traceback.format_exc()}")
pass
# test on non-openai completion call
try:
response = completion(
model="claude-instant-1", messages=messages, logger_fn=logger_fn
)
print(f"claude response: {response}")
score += 1
except:
print(f"error occurred: {traceback.format_exc()}")
pass
# # test on openai embedding call
# try:
# response = embedding(model='text-embedding-ada-002', input=[user_message], logger_fn=logger_fn)
# score +=1
# except:
# traceback.print_exc()
# # test on bad azure openai embedding call -> missing azure flag and this isn't an embedding model
# try:
# response = embedding(model='chatgpt-test', input=[user_message], logger_fn=logger_fn)
# except:
# score +=1 # expect this to fail
# traceback.print_exc()
# # test on good azure openai embedding call
# try:
# response = embedding(model='azure-embedding-model', input=[user_message], azure=True, logger_fn=logger_fn)
# score +=1
# except:
# traceback.print_exc()
# print(f"Score: {score}, Overall score: {score/5}")