mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
* remove unused imports * fix AmazonConverseConfig * fix test * fix import * ruff check fixes * test fixes * fix testing * fix imports
253 lines
10 KiB
Python
253 lines
10 KiB
Python
from concurrent.futures import FIRST_COMPLETED, ThreadPoolExecutor, wait
|
|
from typing import List, Optional
|
|
|
|
import litellm
|
|
from litellm._logging import print_verbose
|
|
from litellm.utils import get_optional_params
|
|
|
|
from ..llms.vllm.completion import handler as vllm_handler
|
|
|
|
|
|
def batch_completion(
|
|
model: str,
|
|
# Optional OpenAI params: see https://platform.openai.com/docs/api-reference/chat/create
|
|
messages: List = [],
|
|
functions: Optional[List] = None,
|
|
function_call: Optional[str] = None,
|
|
temperature: Optional[float] = None,
|
|
top_p: Optional[float] = None,
|
|
n: Optional[int] = None,
|
|
stream: Optional[bool] = None,
|
|
stop=None,
|
|
max_tokens: Optional[int] = None,
|
|
presence_penalty: Optional[float] = None,
|
|
frequency_penalty: Optional[float] = None,
|
|
logit_bias: Optional[dict] = None,
|
|
user: Optional[str] = None,
|
|
deployment_id=None,
|
|
request_timeout: Optional[int] = None,
|
|
timeout: Optional[int] = 600,
|
|
max_workers: Optional[int] = 100,
|
|
# Optional liteLLM function params
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Batch litellm.completion function for a given model.
|
|
|
|
Args:
|
|
model (str): The model to use for generating completions.
|
|
messages (List, optional): List of messages to use as input for generating completions. Defaults to [].
|
|
functions (List, optional): List of functions to use as input for generating completions. Defaults to [].
|
|
function_call (str, optional): The function call to use as input for generating completions. Defaults to "".
|
|
temperature (float, optional): The temperature parameter for generating completions. Defaults to None.
|
|
top_p (float, optional): The top-p parameter for generating completions. Defaults to None.
|
|
n (int, optional): The number of completions to generate. Defaults to None.
|
|
stream (bool, optional): Whether to stream completions or not. Defaults to None.
|
|
stop (optional): The stop parameter for generating completions. Defaults to None.
|
|
max_tokens (float, optional): The maximum number of tokens to generate. Defaults to None.
|
|
presence_penalty (float, optional): The presence penalty for generating completions. Defaults to None.
|
|
frequency_penalty (float, optional): The frequency penalty for generating completions. Defaults to None.
|
|
logit_bias (dict, optional): The logit bias for generating completions. Defaults to {}.
|
|
user (str, optional): The user string for generating completions. Defaults to "".
|
|
deployment_id (optional): The deployment ID for generating completions. Defaults to None.
|
|
request_timeout (int, optional): The request timeout for generating completions. Defaults to None.
|
|
max_workers (int,optional): The maximum number of threads to use for parallel processing.
|
|
|
|
Returns:
|
|
list: A list of completion results.
|
|
"""
|
|
args = locals()
|
|
|
|
batch_messages = messages
|
|
completions = []
|
|
model = model
|
|
custom_llm_provider = None
|
|
if model.split("/", 1)[0] in litellm.provider_list:
|
|
custom_llm_provider = model.split("/", 1)[0]
|
|
model = model.split("/", 1)[1]
|
|
if custom_llm_provider == "vllm":
|
|
optional_params = get_optional_params(
|
|
functions=functions,
|
|
function_call=function_call,
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
n=n,
|
|
stream=stream or False,
|
|
stop=stop,
|
|
max_tokens=max_tokens,
|
|
presence_penalty=presence_penalty,
|
|
frequency_penalty=frequency_penalty,
|
|
logit_bias=logit_bias,
|
|
user=user,
|
|
# params to identify the model
|
|
model=model,
|
|
custom_llm_provider=custom_llm_provider,
|
|
)
|
|
results = vllm_handler.batch_completions(
|
|
model=model,
|
|
messages=batch_messages,
|
|
custom_prompt_dict=litellm.custom_prompt_dict,
|
|
optional_params=optional_params,
|
|
)
|
|
# all non VLLM models for batch completion models
|
|
else:
|
|
|
|
def chunks(lst, n):
|
|
"""Yield successive n-sized chunks from lst."""
|
|
for i in range(0, len(lst), n):
|
|
yield lst[i : i + n]
|
|
|
|
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
|
for sub_batch in chunks(batch_messages, 100):
|
|
for message_list in sub_batch:
|
|
kwargs_modified = args.copy()
|
|
kwargs_modified.pop("max_workers")
|
|
kwargs_modified["messages"] = message_list
|
|
original_kwargs = {}
|
|
if "kwargs" in kwargs_modified:
|
|
original_kwargs = kwargs_modified.pop("kwargs")
|
|
future = executor.submit(
|
|
litellm.completion, **kwargs_modified, **original_kwargs
|
|
)
|
|
completions.append(future)
|
|
|
|
# Retrieve the results from the futures
|
|
# results = [future.result() for future in completions]
|
|
# return exceptions if any
|
|
results = []
|
|
for future in completions:
|
|
try:
|
|
results.append(future.result())
|
|
except Exception as exc:
|
|
results.append(exc)
|
|
|
|
return results
|
|
|
|
|
|
# send one request to multiple models
|
|
# return as soon as one of the llms responds
|
|
def batch_completion_models(*args, **kwargs):
|
|
"""
|
|
Send a request to multiple language models concurrently and return the response
|
|
as soon as one of the models responds.
|
|
|
|
Args:
|
|
*args: Variable-length positional arguments passed to the completion function.
|
|
**kwargs: Additional keyword arguments:
|
|
- models (str or list of str): The language models to send requests to.
|
|
- Other keyword arguments to be passed to the completion function.
|
|
|
|
Returns:
|
|
str or None: The response from one of the language models, or None if no response is received.
|
|
|
|
Note:
|
|
This function utilizes a ThreadPoolExecutor to parallelize requests to multiple models.
|
|
It sends requests concurrently and returns the response from the first model that responds.
|
|
"""
|
|
|
|
if "model" in kwargs:
|
|
kwargs.pop("model")
|
|
if "models" in kwargs:
|
|
models = kwargs["models"]
|
|
kwargs.pop("models")
|
|
futures = {}
|
|
with ThreadPoolExecutor(max_workers=len(models)) as executor:
|
|
for model in models:
|
|
futures[model] = executor.submit(
|
|
litellm.completion, *args, model=model, **kwargs
|
|
)
|
|
|
|
for model, future in sorted(
|
|
futures.items(), key=lambda x: models.index(x[0])
|
|
):
|
|
if future.result() is not None:
|
|
return future.result()
|
|
elif "deployments" in kwargs:
|
|
deployments = kwargs["deployments"]
|
|
kwargs.pop("deployments")
|
|
kwargs.pop("model_list")
|
|
nested_kwargs = kwargs.pop("kwargs", {})
|
|
futures = {}
|
|
with ThreadPoolExecutor(max_workers=len(deployments)) as executor:
|
|
for deployment in deployments:
|
|
for key in kwargs.keys():
|
|
if (
|
|
key not in deployment
|
|
): # don't override deployment values e.g. model name, api base, etc.
|
|
deployment[key] = kwargs[key]
|
|
kwargs = {**deployment, **nested_kwargs}
|
|
futures[deployment["model"]] = executor.submit(
|
|
litellm.completion, **kwargs
|
|
)
|
|
|
|
while futures:
|
|
# wait for the first returned future
|
|
print_verbose("\n\n waiting for next result\n\n")
|
|
done, _ = wait(futures.values(), return_when=FIRST_COMPLETED)
|
|
print_verbose(f"done list\n{done}")
|
|
for future in done:
|
|
try:
|
|
result = future.result()
|
|
return result
|
|
except Exception:
|
|
# if model 1 fails, continue with response from model 2, model3
|
|
print_verbose(
|
|
"\n\ngot an exception, ignoring, removing from futures"
|
|
)
|
|
print_verbose(futures)
|
|
new_futures = {}
|
|
for key, value in futures.items():
|
|
if future == value:
|
|
print_verbose(f"removing key{key}")
|
|
continue
|
|
else:
|
|
new_futures[key] = value
|
|
futures = new_futures
|
|
print_verbose(f"new futures{futures}")
|
|
continue
|
|
|
|
print_verbose("\n\ndone looping through futures\n\n")
|
|
print_verbose(futures)
|
|
|
|
return None # If no response is received from any model
|
|
|
|
|
|
def batch_completion_models_all_responses(*args, **kwargs):
|
|
"""
|
|
Send a request to multiple language models concurrently and return a list of responses
|
|
from all models that respond.
|
|
|
|
Args:
|
|
*args: Variable-length positional arguments passed to the completion function.
|
|
**kwargs: Additional keyword arguments:
|
|
- models (str or list of str): The language models to send requests to.
|
|
- Other keyword arguments to be passed to the completion function.
|
|
|
|
Returns:
|
|
list: A list of responses from the language models that responded.
|
|
|
|
Note:
|
|
This function utilizes a ThreadPoolExecutor to parallelize requests to multiple models.
|
|
It sends requests concurrently and collects responses from all models that respond.
|
|
"""
|
|
import concurrent.futures
|
|
|
|
# ANSI escape codes for colored output
|
|
|
|
if "model" in kwargs:
|
|
kwargs.pop("model")
|
|
if "models" in kwargs:
|
|
models = kwargs["models"]
|
|
kwargs.pop("models")
|
|
else:
|
|
raise Exception("'models' param not in kwargs")
|
|
|
|
responses = []
|
|
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=len(models)) as executor:
|
|
for idx, model in enumerate(models):
|
|
future = executor.submit(litellm.completion, *args, model=model, **kwargs)
|
|
if future.result() is not None:
|
|
responses.append(future.result())
|
|
|
|
return responses
|