mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
* build(pyproject.toml): add new dev dependencies - for type checking * build: reformat files to fit black * ci: reformat to fit black * ci(test-litellm.yml): make tests run clear * build(pyproject.toml): add ruff * fix: fix ruff checks * build(mypy/): fix mypy linting errors * fix(hashicorp_secret_manager.py): fix passing cert for tls auth * build(mypy/): resolve all mypy errors * test: update test * fix: fix black formatting * build(pre-commit-config.yaml): use poetry run black * fix(proxy_server.py): fix linting error * fix: fix ruff safe representation error
272 lines
10 KiB
Python
272 lines
10 KiB
Python
import json
|
|
import threading
|
|
from typing import Optional
|
|
|
|
from litellm._logging import verbose_logger
|
|
from litellm.integrations.custom_logger import CustomLogger
|
|
|
|
|
|
class MlflowLogger(CustomLogger):
|
|
def __init__(self):
|
|
from mlflow.tracking import MlflowClient
|
|
|
|
self._client = MlflowClient()
|
|
|
|
self._stream_id_to_span = {}
|
|
self._lock = threading.Lock() # lock for _stream_id_to_span
|
|
|
|
def log_success_event(self, kwargs, response_obj, start_time, end_time):
|
|
self._handle_success(kwargs, response_obj, start_time, end_time)
|
|
|
|
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
|
|
self._handle_success(kwargs, response_obj, start_time, end_time)
|
|
|
|
def _handle_success(self, kwargs, response_obj, start_time, end_time):
|
|
"""
|
|
Log the success event as an MLflow span.
|
|
Note that this method is called asynchronously in the background thread.
|
|
"""
|
|
from mlflow.entities import SpanStatusCode
|
|
|
|
try:
|
|
verbose_logger.debug("MLflow logging start for success event")
|
|
|
|
if kwargs.get("stream"):
|
|
self._handle_stream_event(kwargs, response_obj, start_time, end_time)
|
|
else:
|
|
span = self._start_span_or_trace(kwargs, start_time)
|
|
end_time_ns = int(end_time.timestamp() * 1e9)
|
|
self._extract_and_set_chat_attributes(span, kwargs, response_obj)
|
|
self._end_span_or_trace(
|
|
span=span,
|
|
outputs=response_obj,
|
|
status=SpanStatusCode.OK,
|
|
end_time_ns=end_time_ns,
|
|
)
|
|
except Exception:
|
|
verbose_logger.debug("MLflow Logging Error", stack_info=True)
|
|
|
|
def _extract_and_set_chat_attributes(self, span, kwargs, response_obj):
|
|
try:
|
|
from mlflow.tracing.utils import set_span_chat_messages # type: ignore
|
|
from mlflow.tracing.utils import set_span_chat_tools # type: ignore
|
|
except ImportError:
|
|
return
|
|
|
|
inputs = self._construct_input(kwargs)
|
|
input_messages = inputs.get("messages", [])
|
|
output_messages = [
|
|
c.message.model_dump(exclude_none=True)
|
|
for c in getattr(response_obj, "choices", [])
|
|
]
|
|
if messages := [*input_messages, *output_messages]:
|
|
set_span_chat_messages(span, messages)
|
|
if tools := inputs.get("tools"):
|
|
set_span_chat_tools(span, tools)
|
|
|
|
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
|
self._handle_failure(kwargs, response_obj, start_time, end_time)
|
|
|
|
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
|
self._handle_failure(kwargs, response_obj, start_time, end_time)
|
|
|
|
def _handle_failure(self, kwargs, response_obj, start_time, end_time):
|
|
"""
|
|
Log the failure event as an MLflow span.
|
|
Note that this method is called *synchronously* unlike the success handler.
|
|
"""
|
|
from mlflow.entities import SpanEvent, SpanStatusCode
|
|
|
|
try:
|
|
span = self._start_span_or_trace(kwargs, start_time)
|
|
|
|
end_time_ns = int(end_time.timestamp() * 1e9)
|
|
|
|
# Record exception info as event
|
|
if exception := kwargs.get("exception"):
|
|
span.add_event(SpanEvent.from_exception(exception)) # type: ignore
|
|
|
|
self._extract_and_set_chat_attributes(span, kwargs, response_obj)
|
|
self._end_span_or_trace(
|
|
span=span,
|
|
outputs=response_obj,
|
|
status=SpanStatusCode.ERROR,
|
|
end_time_ns=end_time_ns,
|
|
)
|
|
|
|
except Exception as e:
|
|
verbose_logger.debug(f"MLflow Logging Error - {e}", stack_info=True)
|
|
|
|
def _handle_stream_event(self, kwargs, response_obj, start_time, end_time):
|
|
"""
|
|
Handle the success event for a streaming response. For streaming calls,
|
|
log_success_event handle is triggered for every chunk of the stream.
|
|
We create a single span for the entire stream request as follows:
|
|
|
|
1. For the first chunk, start a new span and store it in the map.
|
|
2. For subsequent chunks, add the chunk as an event to the span.
|
|
3. For the final chunk, end the span and remove the span from the map.
|
|
"""
|
|
from mlflow.entities import SpanStatusCode
|
|
|
|
litellm_call_id = kwargs.get("litellm_call_id")
|
|
|
|
if litellm_call_id not in self._stream_id_to_span:
|
|
with self._lock:
|
|
# Check again after acquiring lock
|
|
if litellm_call_id not in self._stream_id_to_span:
|
|
# Start a new span for the first chunk of the stream
|
|
span = self._start_span_or_trace(kwargs, start_time)
|
|
self._stream_id_to_span[litellm_call_id] = span
|
|
|
|
# Add chunk as event to the span
|
|
span = self._stream_id_to_span[litellm_call_id]
|
|
self._add_chunk_events(span, response_obj)
|
|
|
|
# If this is the final chunk, end the span. The final chunk
|
|
# has complete_streaming_response that gathers the full response.
|
|
if final_response := kwargs.get("complete_streaming_response"):
|
|
end_time_ns = int(end_time.timestamp() * 1e9)
|
|
|
|
self._extract_and_set_chat_attributes(span, kwargs, final_response)
|
|
self._end_span_or_trace(
|
|
span=span,
|
|
outputs=final_response,
|
|
status=SpanStatusCode.OK,
|
|
end_time_ns=end_time_ns,
|
|
)
|
|
|
|
# Remove the stream_id from the map
|
|
with self._lock:
|
|
self._stream_id_to_span.pop(litellm_call_id)
|
|
|
|
def _add_chunk_events(self, span, response_obj):
|
|
from mlflow.entities import SpanEvent
|
|
|
|
try:
|
|
for choice in response_obj.choices:
|
|
span.add_event(
|
|
SpanEvent(
|
|
name="streaming_chunk",
|
|
attributes={"delta": json.dumps(choice.delta.model_dump())},
|
|
)
|
|
)
|
|
except Exception:
|
|
verbose_logger.debug("Error adding chunk events to span", stack_info=True)
|
|
|
|
def _construct_input(self, kwargs):
|
|
"""Construct span inputs with optional parameters"""
|
|
inputs = {"messages": kwargs.get("messages")}
|
|
if tools := kwargs.get("tools"):
|
|
inputs["tools"] = tools
|
|
|
|
for key in ["functions", "tools", "stream", "tool_choice", "user"]:
|
|
if value := kwargs.get("optional_params", {}).pop(key, None):
|
|
inputs[key] = value
|
|
return inputs
|
|
|
|
def _extract_attributes(self, kwargs):
|
|
"""
|
|
Extract span attributes from kwargs.
|
|
|
|
With the latest version of litellm, the standard_logging_object contains
|
|
canonical information for logging. If it is not present, we extract
|
|
subset of attributes from other kwargs.
|
|
"""
|
|
attributes = {
|
|
"litellm_call_id": kwargs.get("litellm_call_id"),
|
|
"call_type": kwargs.get("call_type"),
|
|
"model": kwargs.get("model"),
|
|
}
|
|
standard_obj = kwargs.get("standard_logging_object")
|
|
if standard_obj:
|
|
attributes.update(
|
|
{
|
|
"api_base": standard_obj.get("api_base"),
|
|
"cache_hit": standard_obj.get("cache_hit"),
|
|
"usage": {
|
|
"completion_tokens": standard_obj.get("completion_tokens"),
|
|
"prompt_tokens": standard_obj.get("prompt_tokens"),
|
|
"total_tokens": standard_obj.get("total_tokens"),
|
|
},
|
|
"raw_llm_response": standard_obj.get("response"),
|
|
"response_cost": standard_obj.get("response_cost"),
|
|
"saved_cache_cost": standard_obj.get("saved_cache_cost"),
|
|
}
|
|
)
|
|
else:
|
|
litellm_params = kwargs.get("litellm_params", {})
|
|
attributes.update(
|
|
{
|
|
"model": kwargs.get("model"),
|
|
"cache_hit": kwargs.get("cache_hit"),
|
|
"custom_llm_provider": kwargs.get("custom_llm_provider"),
|
|
"api_base": litellm_params.get("api_base"),
|
|
"response_cost": kwargs.get("response_cost"),
|
|
}
|
|
)
|
|
return attributes
|
|
|
|
def _get_span_type(self, call_type: Optional[str]) -> str:
|
|
from mlflow.entities import SpanType
|
|
|
|
if call_type in ["completion", "acompletion"]:
|
|
return SpanType.LLM
|
|
elif call_type == "embeddings":
|
|
return SpanType.EMBEDDING
|
|
else:
|
|
return SpanType.LLM
|
|
|
|
def _start_span_or_trace(self, kwargs, start_time):
|
|
"""
|
|
Start an MLflow span or a trace.
|
|
|
|
If there is an active span, we start a new span as a child of
|
|
that span. Otherwise, we start a new trace.
|
|
"""
|
|
import mlflow
|
|
|
|
call_type = kwargs.get("call_type", "completion")
|
|
span_name = f"litellm-{call_type}"
|
|
span_type = self._get_span_type(call_type)
|
|
start_time_ns = int(start_time.timestamp() * 1e9)
|
|
|
|
inputs = self._construct_input(kwargs)
|
|
attributes = self._extract_attributes(kwargs)
|
|
|
|
if active_span := mlflow.get_current_active_span(): # type: ignore
|
|
return self._client.start_span(
|
|
name=span_name,
|
|
request_id=active_span.request_id,
|
|
parent_id=active_span.span_id,
|
|
span_type=span_type,
|
|
inputs=inputs,
|
|
attributes=attributes,
|
|
start_time_ns=start_time_ns,
|
|
)
|
|
else:
|
|
return self._client.start_trace(
|
|
name=span_name,
|
|
span_type=span_type,
|
|
inputs=inputs,
|
|
attributes=attributes,
|
|
start_time_ns=start_time_ns,
|
|
)
|
|
|
|
def _end_span_or_trace(self, span, outputs, end_time_ns, status):
|
|
"""End an MLflow span or a trace."""
|
|
if span.parent_id is None:
|
|
self._client.end_trace(
|
|
request_id=span.request_id,
|
|
outputs=outputs,
|
|
status=status,
|
|
end_time_ns=end_time_ns,
|
|
)
|
|
else:
|
|
self._client.end_span(
|
|
request_id=span.request_id,
|
|
span_id=span.span_id,
|
|
outputs=outputs,
|
|
status=status,
|
|
end_time_ns=end_time_ns,
|
|
)
|