mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
* fix #9783: Retain schema field ordering for google gemini and vertex (#9828) * test: update test * refactor(groq.py): initial commit migrating groq to base_llm_http_handler * fix(streaming_chunk_builder_utils.py): fix how tool content is combined Fixes https://github.com/BerriAI/litellm/issues/10034 * fix(vertex_ai/common_utils.py): prevent infinite loop in helper function * fix(groq/chat/transformation.py): handle groq streaming errors correctly * fix(groq/chat/transformation.py): handle max_retries --------- Co-authored-by: Adrian Lyjak <adrian@chatmeter.com>
945 lines
31 KiB
Python
945 lines
31 KiB
Python
import asyncio
|
|
import os
|
|
import sys
|
|
import time
|
|
import traceback
|
|
|
|
import pytest
|
|
from typing import List
|
|
from litellm.types.utils import StreamingChoices, ChatCompletionAudioResponse
|
|
|
|
|
|
def check_non_streaming_response(completion):
|
|
assert completion.choices[0].message.audio is not None, "Audio response is missing"
|
|
print("audio", completion.choices[0].message.audio)
|
|
assert isinstance(
|
|
completion.choices[0].message.audio, ChatCompletionAudioResponse
|
|
), "Invalid audio response type"
|
|
assert len(completion.choices[0].message.audio.data) > 0, "Audio data is empty"
|
|
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
import os
|
|
|
|
import dotenv
|
|
from openai import OpenAI
|
|
|
|
import litellm
|
|
import stream_chunk_testdata
|
|
from litellm import completion, stream_chunk_builder
|
|
|
|
dotenv.load_dotenv()
|
|
|
|
user_message = "What is the current weather in Boston?"
|
|
messages = [{"content": user_message, "role": "user"}]
|
|
|
|
function_schema = {
|
|
"name": "get_weather",
|
|
"description": "gets the current weather",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, e.g. San Francisco, CA",
|
|
},
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
}
|
|
|
|
|
|
tools_schema = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, e.g. San Francisco, CA",
|
|
},
|
|
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
},
|
|
}
|
|
]
|
|
|
|
# def test_stream_chunk_builder_tools():
|
|
# try:
|
|
# litellm.set_verbose = False
|
|
# response = client.chat.completions.create(
|
|
# model="gpt-3.5-turbo",
|
|
# messages=messages,
|
|
# tools=tools_schema,
|
|
# # stream=True,
|
|
# # complete_response=True # runs stream_chunk_builder under-the-hood
|
|
# )
|
|
|
|
# print(f"response: {response}")
|
|
# print(f"response usage: {response.usage}")
|
|
# except Exception as e:
|
|
# pytest.fail(f"An exception occurred - {str(e)}")
|
|
|
|
# test_stream_chunk_builder_tools()
|
|
|
|
|
|
def test_stream_chunk_builder_litellm_function_call():
|
|
try:
|
|
litellm.set_verbose = False
|
|
response = litellm.completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
functions=[function_schema],
|
|
# stream=True,
|
|
# complete_response=True # runs stream_chunk_builder under-the-hood
|
|
)
|
|
|
|
print(f"response: {response}")
|
|
except Exception as e:
|
|
pytest.fail(f"An exception occurred - {str(e)}")
|
|
|
|
|
|
# test_stream_chunk_builder_litellm_function_call()
|
|
|
|
|
|
def test_stream_chunk_builder_litellm_tool_call():
|
|
try:
|
|
litellm.set_verbose = True
|
|
response = litellm.completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
tools=tools_schema,
|
|
stream=True,
|
|
complete_response=True,
|
|
)
|
|
|
|
print(f"complete response: {response}")
|
|
print(f"complete response usage: {response.usage}")
|
|
assert response.usage.completion_tokens > 0
|
|
assert response.usage.prompt_tokens > 0
|
|
assert (
|
|
response.usage.total_tokens
|
|
== response.usage.completion_tokens + response.usage.prompt_tokens
|
|
)
|
|
except Exception as e:
|
|
pytest.fail(f"An exception occurred - {str(e)}")
|
|
|
|
|
|
# test_stream_chunk_builder_litellm_tool_call()
|
|
|
|
|
|
def test_stream_chunk_builder_litellm_tool_call_regular_message():
|
|
try:
|
|
messages = [{"role": "user", "content": "Hey, how's it going?"}]
|
|
# litellm.set_verbose = True
|
|
response = litellm.completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
tools=tools_schema,
|
|
stream=True,
|
|
complete_response=True,
|
|
)
|
|
|
|
print(f"complete response: {response}")
|
|
print(f"complete response usage: {response.usage}")
|
|
assert response.usage.completion_tokens > 0
|
|
assert response.usage.prompt_tokens > 0
|
|
assert (
|
|
response.usage.total_tokens
|
|
== response.usage.completion_tokens + response.usage.prompt_tokens
|
|
)
|
|
|
|
# check provider is in hidden params
|
|
print("hidden params", response._hidden_params)
|
|
assert response._hidden_params["custom_llm_provider"] == "openai"
|
|
|
|
except Exception as e:
|
|
pytest.fail(f"An exception occurred - {str(e)}")
|
|
|
|
|
|
# test_stream_chunk_builder_litellm_tool_call_regular_message()
|
|
|
|
|
|
def test_stream_chunk_builder_litellm_usage_chunks():
|
|
"""
|
|
Checks if stream_chunk_builder is able to correctly rebuild with given metadata from streaming chunks
|
|
"""
|
|
from litellm.types.utils import Usage
|
|
|
|
messages = [
|
|
{"role": "user", "content": "Tell me the funniest joke you know."},
|
|
{
|
|
"role": "assistant",
|
|
"content": "Why did the chicken cross the road?\nYou will not guess this one I bet\n",
|
|
},
|
|
{"role": "user", "content": "I do not know, why?"},
|
|
{"role": "assistant", "content": "uhhhh\n\n\nhmmmm.....\nthinking....\n"},
|
|
{"role": "user", "content": "\nI am waiting...\n\n...\n"},
|
|
]
|
|
|
|
usage: litellm.Usage = Usage(
|
|
completion_tokens=27,
|
|
prompt_tokens=50,
|
|
total_tokens=82,
|
|
completion_tokens_details=None,
|
|
prompt_tokens_details=None,
|
|
)
|
|
|
|
gemini_pt = usage.prompt_tokens
|
|
|
|
# make a streaming gemini call
|
|
try:
|
|
response = completion(
|
|
model="gemini/gemini-1.5-flash",
|
|
messages=messages,
|
|
stream=True,
|
|
complete_response=True,
|
|
stream_options={"include_usage": True},
|
|
)
|
|
except litellm.InternalServerError as e:
|
|
pytest.skip(f"Skipping test due to internal server error - {str(e)}")
|
|
|
|
usage: litellm.Usage = response.usage
|
|
|
|
stream_rebuilt_pt = usage.prompt_tokens
|
|
|
|
# assert prompt tokens are the same
|
|
|
|
assert (
|
|
gemini_pt == stream_rebuilt_pt
|
|
), f"Stream builder is not able to rebuild usage correctly. Got={stream_rebuilt_pt}, expected={gemini_pt}"
|
|
|
|
|
|
def test_stream_chunk_builder_litellm_mixed_calls():
|
|
response = stream_chunk_builder(stream_chunk_testdata.chunks)
|
|
assert (
|
|
response.choices[0].message.content
|
|
== "To answer your question about how many rows are in the 'users' table, I'll need to run a SQL query. Let me do that for you."
|
|
)
|
|
|
|
print(response.choices[0].message.tool_calls[0].to_dict())
|
|
|
|
assert len(response.choices[0].message.tool_calls) == 1
|
|
assert response.choices[0].message.tool_calls[0].to_dict() == {
|
|
"function": {
|
|
"arguments": '{"query": "SELECT COUNT(*) FROM users;"}',
|
|
"name": "sql_query",
|
|
},
|
|
"id": "toolu_01H3AjkLpRtGQrof13CBnWfK",
|
|
"type": "function",
|
|
}
|
|
|
|
|
|
def test_stream_chunk_builder_litellm_empty_chunks():
|
|
with pytest.raises(litellm.APIError):
|
|
response = stream_chunk_builder(chunks=None)
|
|
|
|
response = stream_chunk_builder(chunks=[])
|
|
assert response is None
|
|
|
|
|
|
def test_stream_chunk_builder_multiple_tool_calls():
|
|
init_chunks = [
|
|
{
|
|
"id": "chatcmpl-A5kCnzaxRsknd6008552ZhDi71yPt",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {
|
|
"role": "assistant",
|
|
"tool_calls": [
|
|
{
|
|
"id": "call_X9P9B6STj7ze8OsJCGkfoN94",
|
|
"function": {"arguments": "", "name": "exponentiate"},
|
|
"type": "function",
|
|
"index": 0,
|
|
}
|
|
],
|
|
},
|
|
}
|
|
],
|
|
"created": 1725932618,
|
|
"model": "gpt-4o-2024-08-06",
|
|
"object": "chat.completion.chunk",
|
|
"system_fingerprint": "fp_b2ffeb16ee",
|
|
},
|
|
{
|
|
"id": "chatcmpl-A5kCnzaxRsknd6008552ZhDi71yPt",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {
|
|
"role": "assistant",
|
|
"tool_calls": [
|
|
{
|
|
"function": {"arguments": '{"ba'},
|
|
"type": "function",
|
|
"index": 0,
|
|
}
|
|
],
|
|
},
|
|
}
|
|
],
|
|
"created": 1725932618,
|
|
"model": "gpt-4o-2024-08-06",
|
|
"object": "chat.completion.chunk",
|
|
"system_fingerprint": "fp_b2ffeb16ee",
|
|
},
|
|
{
|
|
"id": "chatcmpl-A5kCnzaxRsknd6008552ZhDi71yPt",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {
|
|
"role": "assistant",
|
|
"tool_calls": [
|
|
{
|
|
"function": {"arguments": 'se": '},
|
|
"type": "function",
|
|
"index": 0,
|
|
}
|
|
],
|
|
},
|
|
}
|
|
],
|
|
"created": 1725932618,
|
|
"model": "gpt-4o-2024-08-06",
|
|
"object": "chat.completion.chunk",
|
|
"system_fingerprint": "fp_b2ffeb16ee",
|
|
},
|
|
{
|
|
"id": "chatcmpl-A5kCnzaxRsknd6008552ZhDi71yPt",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {
|
|
"role": "assistant",
|
|
"tool_calls": [
|
|
{
|
|
"function": {"arguments": '3, "ex'},
|
|
"type": "function",
|
|
"index": 0,
|
|
}
|
|
],
|
|
},
|
|
}
|
|
],
|
|
"created": 1725932618,
|
|
"model": "gpt-4o-2024-08-06",
|
|
"object": "chat.completion.chunk",
|
|
"system_fingerprint": "fp_b2ffeb16ee",
|
|
},
|
|
{
|
|
"id": "chatcmpl-A5kCnzaxRsknd6008552ZhDi71yPt",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {
|
|
"role": "assistant",
|
|
"tool_calls": [
|
|
{
|
|
"function": {"arguments": "pone"},
|
|
"type": "function",
|
|
"index": 0,
|
|
}
|
|
],
|
|
},
|
|
}
|
|
],
|
|
"created": 1725932618,
|
|
"model": "gpt-4o-2024-08-06",
|
|
"object": "chat.completion.chunk",
|
|
"system_fingerprint": "fp_b2ffeb16ee",
|
|
},
|
|
{
|
|
"id": "chatcmpl-A5kCnzaxRsknd6008552ZhDi71yPt",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {
|
|
"role": "assistant",
|
|
"tool_calls": [
|
|
{
|
|
"function": {"arguments": 'nt": '},
|
|
"type": "function",
|
|
"index": 0,
|
|
}
|
|
],
|
|
},
|
|
}
|
|
],
|
|
"created": 1725932618,
|
|
"model": "gpt-4o-2024-08-06",
|
|
"object": "chat.completion.chunk",
|
|
"system_fingerprint": "fp_b2ffeb16ee",
|
|
},
|
|
{
|
|
"id": "chatcmpl-A5kCnzaxRsknd6008552ZhDi71yPt",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {
|
|
"role": "assistant",
|
|
"tool_calls": [
|
|
{
|
|
"function": {"arguments": "5}"},
|
|
"type": "function",
|
|
"index": 0,
|
|
}
|
|
],
|
|
},
|
|
}
|
|
],
|
|
"created": 1725932618,
|
|
"model": "gpt-4o-2024-08-06",
|
|
"object": "chat.completion.chunk",
|
|
"system_fingerprint": "fp_b2ffeb16ee",
|
|
},
|
|
{
|
|
"id": "chatcmpl-A5kCnzaxRsknd6008552ZhDi71yPt",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {
|
|
"role": "assistant",
|
|
"tool_calls": [
|
|
{
|
|
"id": "call_Qq8yDeRx7v276abRcLrYORdW",
|
|
"function": {"arguments": "", "name": "add"},
|
|
"type": "function",
|
|
"index": 1,
|
|
}
|
|
],
|
|
},
|
|
}
|
|
],
|
|
"created": 1725932618,
|
|
"model": "gpt-4o-2024-08-06",
|
|
"object": "chat.completion.chunk",
|
|
"system_fingerprint": "fp_b2ffeb16ee",
|
|
},
|
|
{
|
|
"id": "chatcmpl-A5kCnzaxRsknd6008552ZhDi71yPt",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {
|
|
"role": "assistant",
|
|
"tool_calls": [
|
|
{
|
|
"function": {"arguments": '{"fi'},
|
|
"type": "function",
|
|
"index": 1,
|
|
}
|
|
],
|
|
},
|
|
}
|
|
],
|
|
"created": 1725932618,
|
|
"model": "gpt-4o-2024-08-06",
|
|
"object": "chat.completion.chunk",
|
|
"system_fingerprint": "fp_b2ffeb16ee",
|
|
},
|
|
{
|
|
"id": "chatcmpl-A5kCnzaxRsknd6008552ZhDi71yPt",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {
|
|
"role": "assistant",
|
|
"tool_calls": [
|
|
{
|
|
"function": {"arguments": "rst_i"},
|
|
"type": "function",
|
|
"index": 1,
|
|
}
|
|
],
|
|
},
|
|
}
|
|
],
|
|
"created": 1725932618,
|
|
"model": "gpt-4o-2024-08-06",
|
|
"object": "chat.completion.chunk",
|
|
"system_fingerprint": "fp_b2ffeb16ee",
|
|
},
|
|
{
|
|
"id": "chatcmpl-A5kCnzaxRsknd6008552ZhDi71yPt",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {
|
|
"role": "assistant",
|
|
"tool_calls": [
|
|
{
|
|
"function": {"arguments": 'nt": 1'},
|
|
"type": "function",
|
|
"index": 1,
|
|
}
|
|
],
|
|
},
|
|
}
|
|
],
|
|
"created": 1725932618,
|
|
"model": "gpt-4o-2024-08-06",
|
|
"object": "chat.completion.chunk",
|
|
"system_fingerprint": "fp_b2ffeb16ee",
|
|
},
|
|
{
|
|
"id": "chatcmpl-A5kCnzaxRsknd6008552ZhDi71yPt",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {
|
|
"role": "assistant",
|
|
"tool_calls": [
|
|
{
|
|
"function": {"arguments": '2, "'},
|
|
"type": "function",
|
|
"index": 1,
|
|
}
|
|
],
|
|
},
|
|
}
|
|
],
|
|
"created": 1725932618,
|
|
"model": "gpt-4o-2024-08-06",
|
|
"object": "chat.completion.chunk",
|
|
"system_fingerprint": "fp_b2ffeb16ee",
|
|
},
|
|
{
|
|
"id": "chatcmpl-A5kCnzaxRsknd6008552ZhDi71yPt",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {
|
|
"role": "assistant",
|
|
"tool_calls": [
|
|
{
|
|
"function": {"arguments": "secon"},
|
|
"type": "function",
|
|
"index": 1,
|
|
}
|
|
],
|
|
},
|
|
}
|
|
],
|
|
"created": 1725932618,
|
|
"model": "gpt-4o-2024-08-06",
|
|
"object": "chat.completion.chunk",
|
|
"system_fingerprint": "fp_b2ffeb16ee",
|
|
},
|
|
{
|
|
"id": "chatcmpl-A5kCnzaxRsknd6008552ZhDi71yPt",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {
|
|
"role": "assistant",
|
|
"tool_calls": [
|
|
{
|
|
"function": {"arguments": 'd_int"'},
|
|
"type": "function",
|
|
"index": 1,
|
|
}
|
|
],
|
|
},
|
|
}
|
|
],
|
|
"created": 1725932618,
|
|
"model": "gpt-4o-2024-08-06",
|
|
"object": "chat.completion.chunk",
|
|
"system_fingerprint": "fp_b2ffeb16ee",
|
|
},
|
|
{
|
|
"id": "chatcmpl-A5kCnzaxRsknd6008552ZhDi71yPt",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {
|
|
"role": "assistant",
|
|
"tool_calls": [
|
|
{
|
|
"function": {"arguments": ": 3}"},
|
|
"type": "function",
|
|
"index": 1,
|
|
}
|
|
],
|
|
},
|
|
}
|
|
],
|
|
"created": 1725932618,
|
|
"model": "gpt-4o-2024-08-06",
|
|
"object": "chat.completion.chunk",
|
|
"system_fingerprint": "fp_b2ffeb16ee",
|
|
},
|
|
{
|
|
"id": "chatcmpl-A5kCnzaxRsknd6008552ZhDi71yPt",
|
|
"choices": [{"finish_reason": "tool_calls", "index": 0, "delta": {}}],
|
|
"created": 1725932618,
|
|
"model": "gpt-4o-2024-08-06",
|
|
"object": "chat.completion.chunk",
|
|
"system_fingerprint": "fp_b2ffeb16ee",
|
|
},
|
|
]
|
|
|
|
chunks = []
|
|
for chunk in init_chunks:
|
|
chunks.append(litellm.ModelResponse(**chunk, stream=True))
|
|
response = stream_chunk_builder(chunks=chunks)
|
|
|
|
print(f"Returned response: {response}")
|
|
completed_response = {
|
|
"id": "chatcmpl-A61mXjvcRX0Xr2IiojN9TPiy1P3Fm",
|
|
"choices": [
|
|
{
|
|
"finish_reason": "tool_calls",
|
|
"index": 0,
|
|
"message": {
|
|
"content": None,
|
|
"role": "assistant",
|
|
"tool_calls": [
|
|
{
|
|
"function": {
|
|
"arguments": '{"base": 3, "exponent": 5}',
|
|
"name": "exponentiate",
|
|
},
|
|
"id": "call_X9P9B6STj7ze8OsJCGkfoN94",
|
|
"type": "function",
|
|
},
|
|
{
|
|
"function": {
|
|
"arguments": '{"first_int": 12, "second_int": 3}',
|
|
"name": "add",
|
|
},
|
|
"id": "call_Qq8yDeRx7v276abRcLrYORdW",
|
|
"type": "function",
|
|
},
|
|
],
|
|
"function_call": None,
|
|
},
|
|
}
|
|
],
|
|
"created": 1726000181,
|
|
"model": "gpt-4o-2024-05-13",
|
|
"object": "chat.completion",
|
|
"system_fingerprint": "fp_25624ae3a5",
|
|
"usage": {"completion_tokens": 55, "prompt_tokens": 127, "total_tokens": 182},
|
|
"service_tier": None,
|
|
}
|
|
|
|
expected_response = litellm.ModelResponse(**completed_response)
|
|
|
|
print(f"\n\nexpected_response:\n{expected_response}\n\n")
|
|
assert (
|
|
expected_response.choices == response.choices
|
|
), "\nGot={}\n, Expected={}\n".format(response.choices, expected_response.choices)
|
|
|
|
|
|
def test_stream_chunk_builder_openai_prompt_caching():
|
|
from openai import OpenAI
|
|
from pydantic import BaseModel
|
|
|
|
client = OpenAI(
|
|
# This is the default and can be omitted
|
|
api_key=os.getenv("OPENAI_API_KEY"),
|
|
)
|
|
|
|
chat_completion = client.chat.completions.create(
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "Say this is a test",
|
|
}
|
|
],
|
|
model="gpt-3.5-turbo",
|
|
stream=True,
|
|
stream_options={"include_usage": True},
|
|
)
|
|
chunks: List[litellm.ModelResponse] = []
|
|
usage_obj = None
|
|
for chunk in chat_completion:
|
|
chunks.append(litellm.ModelResponse(**chunk.model_dump(), stream=True))
|
|
|
|
print(f"chunks: {chunks}")
|
|
|
|
usage_obj: litellm.Usage = chunks[-1].usage # type: ignore
|
|
|
|
response = stream_chunk_builder(chunks=chunks)
|
|
print(f"response: {response}")
|
|
print(f"response usage: {response.usage}")
|
|
for k, v in usage_obj.model_dump(exclude_none=True).items():
|
|
print(k, v)
|
|
response_usage_value = getattr(response.usage, k) # type: ignore
|
|
print(f"response_usage_value: {response_usage_value}")
|
|
print(f"type: {type(response_usage_value)}")
|
|
if isinstance(response_usage_value, BaseModel):
|
|
assert response_usage_value.model_dump(exclude_none=True) == v
|
|
else:
|
|
assert response_usage_value == v
|
|
|
|
|
|
def test_stream_chunk_builder_openai_audio_output_usage():
|
|
from pydantic import BaseModel
|
|
from openai import OpenAI
|
|
from typing import Optional
|
|
|
|
client = OpenAI(
|
|
# This is the default and can be omitted
|
|
api_key=os.getenv("OPENAI_API_KEY"),
|
|
)
|
|
|
|
try:
|
|
completion = client.chat.completions.create(
|
|
model="gpt-4o-audio-preview",
|
|
modalities=["text", "audio"],
|
|
audio={"voice": "alloy", "format": "pcm16"},
|
|
messages=[{"role": "user", "content": "response in 1 word - yes or no"}],
|
|
stream=True,
|
|
stream_options={"include_usage": True},
|
|
)
|
|
except Exception as e:
|
|
if "openai-internal" in str(e):
|
|
pytest.skip("Skipping test due to openai-internal error")
|
|
|
|
chunks = []
|
|
for chunk in completion:
|
|
chunks.append(litellm.ModelResponse(**chunk.model_dump(), stream=True))
|
|
|
|
usage_obj: Optional[litellm.Usage] = None
|
|
|
|
for index, chunk in enumerate(chunks):
|
|
if hasattr(chunk, "usage"):
|
|
usage_obj = chunk.usage
|
|
print(f"chunk usage: {chunk.usage}")
|
|
print(f"index: {index}")
|
|
print(f"len chunks: {len(chunks)}")
|
|
|
|
print(f"usage_obj: {usage_obj}")
|
|
response = stream_chunk_builder(chunks=chunks)
|
|
print(f"response usage: {response.usage}")
|
|
check_non_streaming_response(response)
|
|
print(f"response: {response}")
|
|
# Convert both usage objects to dictionaries for easier comparison
|
|
usage_dict = usage_obj.model_dump(exclude_none=True)
|
|
response_usage_dict = response.usage.model_dump(exclude_none=True)
|
|
|
|
# Simple dictionary comparison
|
|
assert (
|
|
usage_dict == response_usage_dict
|
|
), f"\nExpected: {usage_dict}\nGot: {response_usage_dict}"
|
|
|
|
|
|
def test_stream_chunk_builder_empty_initial_chunk():
|
|
from litellm.litellm_core_utils.streaming_chunk_builder_utils import (
|
|
ChunkProcessor,
|
|
)
|
|
|
|
chunks = [
|
|
{"id": ""},
|
|
{"id": "1"},
|
|
{"id": "1"},
|
|
]
|
|
|
|
id = ChunkProcessor._get_chunk_id(chunks)
|
|
assert id == "1"
|
|
|
|
|
|
def test_stream_chunk_builder_tool_calls_list():
|
|
from litellm.litellm_core_utils.streaming_chunk_builder_utils import (
|
|
ChunkProcessor,
|
|
)
|
|
from litellm.types.utils import (
|
|
ChatCompletionMessageToolCall,
|
|
Function,
|
|
ModelResponseStream,
|
|
Delta,
|
|
StreamingChoices,
|
|
ChatCompletionDeltaToolCall,
|
|
)
|
|
|
|
chunks = [
|
|
ModelResponseStream(
|
|
id="chatcmpl-f323f7a5-2da0-4f86-8ed7-c653c5a359d9",
|
|
created=1736388417,
|
|
model="llama-3.3-70b-versatile",
|
|
object="chat.completion.chunk",
|
|
system_fingerprint=None,
|
|
choices=[
|
|
StreamingChoices(
|
|
finish_reason=None,
|
|
index=0,
|
|
delta=Delta(
|
|
content="",
|
|
role="assistant",
|
|
function_call=None,
|
|
tool_calls=[
|
|
ChatCompletionDeltaToolCall(
|
|
id="call_9y79",
|
|
function=Function(
|
|
arguments='{"location": "San Francisco", "unit": "celsius"}',
|
|
name="get_current_weather",
|
|
),
|
|
type="function",
|
|
index=0,
|
|
)
|
|
],
|
|
audio=None,
|
|
),
|
|
logprobs=None,
|
|
)
|
|
],
|
|
stream_options=None,
|
|
),
|
|
ModelResponseStream(
|
|
id="chatcmpl-f323f7a5-2da0-4f86-8ed7-c653c5a359d9",
|
|
created=1736388417,
|
|
model="llama-3.3-70b-versatile",
|
|
object="chat.completion.chunk",
|
|
system_fingerprint=None,
|
|
choices=[
|
|
StreamingChoices(
|
|
finish_reason=None,
|
|
index=0,
|
|
delta=Delta(
|
|
content="",
|
|
role=None,
|
|
function_call=None,
|
|
tool_calls=[
|
|
ChatCompletionDeltaToolCall(
|
|
id="call_pfp7",
|
|
function=Function(
|
|
arguments='{"location": "Tokyo", "unit": "celsius"}',
|
|
name="get_current_weather",
|
|
),
|
|
type="function",
|
|
index=1,
|
|
)
|
|
],
|
|
audio=None,
|
|
),
|
|
logprobs=None,
|
|
)
|
|
],
|
|
stream_options=None,
|
|
),
|
|
ModelResponseStream(
|
|
id="chatcmpl-f323f7a5-2da0-4f86-8ed7-c653c5a359d9",
|
|
created=1736388417,
|
|
model="llama-3.3-70b-versatile",
|
|
object="chat.completion.chunk",
|
|
system_fingerprint=None,
|
|
choices=[
|
|
StreamingChoices(
|
|
finish_reason=None,
|
|
index=0,
|
|
delta=Delta(
|
|
content="",
|
|
role=None,
|
|
function_call=None,
|
|
tool_calls=[
|
|
ChatCompletionDeltaToolCall(
|
|
id="call_hyj5",
|
|
function=Function(
|
|
arguments='{"location": "Paris", "unit": "celsius"}',
|
|
name="get_current_weather",
|
|
),
|
|
type="function",
|
|
index=2,
|
|
)
|
|
],
|
|
audio=None,
|
|
),
|
|
logprobs=None,
|
|
)
|
|
],
|
|
stream_options=None,
|
|
),
|
|
]
|
|
|
|
processor = ChunkProcessor(chunks=chunks)
|
|
|
|
tool_calls = processor.get_combined_tool_content(tool_call_chunks=chunks)
|
|
print(f"tool_calls: {tool_calls}")
|
|
assert len(tool_calls) == 3
|
|
|
|
|
|
import json
|
|
|
|
|
|
def get_current_weather(location, unit="fahrenheit"):
|
|
"""Get the current weather in a given location"""
|
|
if "tokyo" in location.lower():
|
|
return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"})
|
|
elif "san francisco" in location.lower():
|
|
return json.dumps(
|
|
{"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}
|
|
)
|
|
elif "paris" in location.lower():
|
|
return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"})
|
|
else:
|
|
return json.dumps({"location": location, "temperature": "unknown"})
|
|
|
|
|
|
@pytest.fixture(scope="module", autouse=True)
|
|
def load_env():
|
|
messages = [
|
|
{"role": "system", "content": "You are a helpful AI assistant"},
|
|
{
|
|
"role": "user",
|
|
"content": "What's the weather like in San Francisco, Tokyo, and Paris?",
|
|
},
|
|
]
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": litellm.utils.function_to_dict(get_current_weather),
|
|
}
|
|
]
|
|
OPENAI_GPT4oMINI = {
|
|
"messages": messages,
|
|
"model": "gpt-4o-mini",
|
|
"temperature": 0.0,
|
|
"tools": tools,
|
|
"stream": True,
|
|
}
|
|
LLAMA3_3 = {
|
|
"messages": messages,
|
|
"model": "groq/llama-3.3-70b-versatile",
|
|
"api_base": "https://api.groq.com/openai/v1",
|
|
"temperature": 0.0,
|
|
"tools": tools,
|
|
"stream": True,
|
|
}
|
|
return OPENAI_GPT4oMINI, LLAMA3_3
|
|
|
|
|
|
def execute_completion(opts: dict):
|
|
partial_streaming_chunks = []
|
|
response_gen = litellm.completion(**opts)
|
|
for i, part in enumerate(response_gen):
|
|
partial_streaming_chunks.append(part)
|
|
print("\n\n")
|
|
print(f"partial_streaming_chunks: {partial_streaming_chunks}")
|
|
print("\n\n")
|
|
assembly = litellm.stream_chunk_builder(partial_streaming_chunks)
|
|
print(f"assembly.choices[0].message.tool_calls: {assembly.choices[0].message.tool_calls}")
|
|
assert len(assembly.choices[0].message.tool_calls) == 3, (
|
|
assembly.choices[0].message.tool_calls[0].function.arguments[0]
|
|
)
|
|
print(assembly.choices[0].message.tool_calls)
|
|
for tool_call in assembly.choices[0].message.tool_calls:
|
|
json.loads(tool_call.function.arguments) # assert valid json - https://github.com/BerriAI/litellm/issues/10034
|
|
|
|
|
|
def test_grok_bug(load_env):
|
|
litellm.set_verbose = True
|
|
_, LLAMA3_3 = load_env
|
|
execute_completion(LLAMA3_3)
|