litellm-mirror/litellm/proxy/spend_tracking/spend_tracking_utils.py
Krish Dholakia 92a7e8e3e9 LiteLLM Minor Fixes & Improvements (12/05/2024) (#7051)
* fix(cost_calculator.py): move to using `.get_model_info()` for cost per token calculations

ensures cost tracking is reliable - handles edge cases of parsing model cost map

* build(model_prices_and_context_window.json): add 'supports_response_schema' for select tgai models

Fixes https://github.com/BerriAI/litellm/pull/7037#discussion_r1872157329

* build(model_prices_and_context_window.json): remove 'pdf input' and 'vision' support from nova micro in model map

Bedrock docs indicate no support for micro - https://docs.aws.amazon.com/bedrock/latest/userguide/conversation-inference-supported-models-features.html

* fix(converse_transformation.py): support amazon nova tool use

* fix(opentelemetry): Add missing LLM request type attribute to spans (#7041)

* feat(opentelemetry): add LLM request type attribute to spans

* lint

* fix: curl usage (#7038)

curl -d, --data <data> is lowercase d
curl -D, --dump-header <filename> is uppercase D

references:
https://curl.se/docs/manpage.html#-d
https://curl.se/docs/manpage.html#-D

* fix(spend_tracking.py): handle empty 'id' in model response - when creating spend log

Fixes https://github.com/BerriAI/litellm/issues/7023

* fix(streaming_chunk_builder.py): handle initial id being empty string

Fixes https://github.com/BerriAI/litellm/issues/7023

* fix(anthropic_passthrough_logging_handler.py): add end user cost tracking for anthropic pass through endpoint

* docs(pass_through/): refactor docs location + add table on supported features for pass through endpoints

* feat(anthropic_passthrough_logging_handler.py): support end user cost tracking via anthropic sdk

* docs(anthropic_completion.md): add docs on passing end user param for cost tracking on anthropic sdk

* fix(litellm_logging.py): use standard logging payload if present in kwargs

prevent datadog logging error for pass through endpoints

* docs(bedrock.md): add rerank api usage example to docs

* bugfix/change dummy tool name format (#7053)

* fix viewing keys (#7042)

* ui new build

* build(model_prices_and_context_window.json): add bedrock region models to model cost map (#7044)

* bye (#6982)

* (fix) litellm router.aspeech  (#6962)

* doc Migrating Databases

* fix aspeech on router

* test_audio_speech_router

* test_audio_speech_router

* docs show supported providers on batches api doc

* change dummy tool name format

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Krish Dholakia <krrishdholakia@gmail.com>
Co-authored-by: yujonglee <yujonglee.dev@gmail.com>

* fix: fix linting errors

* test: update test

* fix(litellm_logging.py): fix pass through check

* fix(test_otel_logging.py): fix test

* fix(cost_calculator.py): update handling for cost per second

* fix(cost_calculator.py): fix cost check

* test: fix test

* (fix) adding public routes when using custom header  (#7045)

* get_api_key_from_custom_header

* add test_get_api_key_from_custom_header

* fix testing use 1 file for test user api key auth

* fix test user api key auth

* test_custom_api_key_header_name

* build: update ui build

---------

Co-authored-by: Doron Kopit <83537683+doronkopit5@users.noreply.github.com>
Co-authored-by: lloydchang <lloydchang@gmail.com>
Co-authored-by: hgulersen <haymigulersen@gmail.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: yujonglee <yujonglee.dev@gmail.com>
2024-12-06 14:29:53 -08:00

243 lines
7.7 KiB
Python

import datetime
import json
import os
import secrets
import traceback
from datetime import datetime as dt
from typing import Optional
from pydantic import BaseModel
import litellm
from litellm._logging import verbose_proxy_logger
from litellm.proxy._types import SpendLogsMetadata, SpendLogsPayload
from litellm.proxy.utils import PrismaClient, hash_token
def _is_master_key(api_key: str, _master_key: Optional[str]) -> bool:
if _master_key is None:
return False
## string comparison
is_master_key = secrets.compare_digest(api_key, _master_key)
if is_master_key:
return True
## hash comparison
is_master_key = secrets.compare_digest(api_key, hash_token(_master_key))
if is_master_key:
return True
return False
def get_logging_payload(
kwargs, response_obj, start_time, end_time, end_user_id: Optional[str]
) -> SpendLogsPayload:
from pydantic import Json
from litellm.proxy._types import LiteLLM_SpendLogs
from litellm.proxy.proxy_server import general_settings, master_key
verbose_proxy_logger.debug(
f"SpendTable: get_logging_payload - kwargs: {kwargs}\n\n"
)
if kwargs is None:
kwargs = {}
if response_obj is None:
response_obj = {}
# standardize this function to be used across, s3, dynamoDB, langfuse logging
litellm_params = kwargs.get("litellm_params", {})
metadata = (
litellm_params.get("metadata", {}) or {}
) # if litellm_params['metadata'] == None
completion_start_time = kwargs.get("completion_start_time", end_time)
call_type = kwargs.get("call_type")
cache_hit = kwargs.get("cache_hit", False)
usage = response_obj.get("usage", None) or {}
if isinstance(usage, litellm.Usage):
usage = dict(usage)
id = response_obj.get("id") or kwargs.get("litellm_call_id")
api_key = metadata.get("user_api_key", "")
if api_key is not None and isinstance(api_key, str):
if api_key.startswith("sk-"):
# hash the api_key
api_key = hash_token(api_key)
if (
_is_master_key(api_key=api_key, _master_key=master_key)
and general_settings.get("disable_adding_master_key_hash_to_db") is True
):
api_key = "litellm_proxy_master_key" # use a known alias, if the user disabled storing master key in db
_model_id = metadata.get("model_info", {}).get("id", "")
_model_group = metadata.get("model_group", "")
request_tags = (
json.dumps(metadata.get("tags", []))
if isinstance(metadata.get("tags", []), list)
else "[]"
)
# clean up litellm metadata
clean_metadata = SpendLogsMetadata(
user_api_key=None,
user_api_key_alias=None,
user_api_key_team_id=None,
user_api_key_user_id=None,
user_api_key_team_alias=None,
spend_logs_metadata=None,
requester_ip_address=None,
additional_usage_values=None,
)
if isinstance(metadata, dict):
verbose_proxy_logger.debug(
"getting payload for SpendLogs, available keys in metadata: "
+ str(list(metadata.keys()))
)
# Filter the metadata dictionary to include only the specified keys
clean_metadata = SpendLogsMetadata(
**{ # type: ignore
key: metadata[key]
for key in SpendLogsMetadata.__annotations__.keys()
if key in metadata
}
)
special_usage_fields = ["completion_tokens", "prompt_tokens", "total_tokens"]
additional_usage_values = {}
for k, v in usage.items():
if k not in special_usage_fields:
if isinstance(v, BaseModel):
v = v.model_dump()
additional_usage_values.update({k: v})
clean_metadata["additional_usage_values"] = additional_usage_values
if litellm.cache is not None:
cache_key = litellm.cache.get_cache_key(**kwargs)
else:
cache_key = "Cache OFF"
if cache_hit is True:
import time
id = f"{id}_cache_hit{time.time()}" # SpendLogs does not allow duplicate request_id
try:
payload: SpendLogsPayload = SpendLogsPayload(
request_id=str(id),
call_type=call_type or "",
api_key=str(api_key),
cache_hit=str(cache_hit),
startTime=start_time,
endTime=end_time,
completionStartTime=completion_start_time,
model=kwargs.get("model", "") or "",
user=kwargs.get("litellm_params", {})
.get("metadata", {})
.get("user_api_key_user_id", "")
or "",
team_id=kwargs.get("litellm_params", {})
.get("metadata", {})
.get("user_api_key_team_id", "")
or "",
metadata=json.dumps(clean_metadata),
cache_key=cache_key,
spend=kwargs.get("response_cost", 0),
total_tokens=usage.get("total_tokens", 0),
prompt_tokens=usage.get("prompt_tokens", 0),
completion_tokens=usage.get("completion_tokens", 0),
request_tags=request_tags,
end_user=end_user_id or "",
api_base=litellm_params.get("api_base", ""),
model_group=_model_group,
model_id=_model_id,
requester_ip_address=clean_metadata.get("requester_ip_address", None),
)
verbose_proxy_logger.debug(
"SpendTable: created payload - payload: %s\n\n", payload
)
return payload
except Exception as e:
verbose_proxy_logger.exception(
"Error creating spendlogs object - {}".format(str(e))
)
raise e
async def get_spend_by_team_and_customer(
start_date: dt,
end_date: dt,
team_id: str,
customer_id: str,
prisma_client: PrismaClient,
):
sql_query = """
WITH SpendByModelApiKey AS (
SELECT
date_trunc('day', sl."startTime") AS group_by_day,
COALESCE(tt.team_alias, 'Unassigned Team') AS team_name,
sl.end_user AS customer,
sl.model,
sl.api_key,
SUM(sl.spend) AS model_api_spend,
SUM(sl.total_tokens) AS model_api_tokens
FROM
"LiteLLM_SpendLogs" sl
LEFT JOIN
"LiteLLM_TeamTable" tt
ON
sl.team_id = tt.team_id
WHERE
sl."startTime" BETWEEN $1::date AND $2::date
AND sl.team_id = $3
AND sl.end_user = $4
GROUP BY
date_trunc('day', sl."startTime"),
tt.team_alias,
sl.end_user,
sl.model,
sl.api_key
)
SELECT
group_by_day,
jsonb_agg(jsonb_build_object(
'team_name', team_name,
'customer', customer,
'total_spend', total_spend,
'metadata', metadata
)) AS teams_customers
FROM (
SELECT
group_by_day,
team_name,
customer,
SUM(model_api_spend) AS total_spend,
jsonb_agg(jsonb_build_object(
'model', model,
'api_key', api_key,
'spend', model_api_spend,
'total_tokens', model_api_tokens
)) AS metadata
FROM
SpendByModelApiKey
GROUP BY
group_by_day,
team_name,
customer
) AS aggregated
GROUP BY
group_by_day
ORDER BY
group_by_day;
"""
db_response = await prisma_client.db.query_raw(
sql_query, start_date, end_date, team_id, customer_id
)
if db_response is None:
return []
return db_response