litellm-mirror/tests/local_testing/test_get_model_info.py
Krish Dholakia 92a7e8e3e9 LiteLLM Minor Fixes & Improvements (12/05/2024) (#7051)
* fix(cost_calculator.py): move to using `.get_model_info()` for cost per token calculations

ensures cost tracking is reliable - handles edge cases of parsing model cost map

* build(model_prices_and_context_window.json): add 'supports_response_schema' for select tgai models

Fixes https://github.com/BerriAI/litellm/pull/7037#discussion_r1872157329

* build(model_prices_and_context_window.json): remove 'pdf input' and 'vision' support from nova micro in model map

Bedrock docs indicate no support for micro - https://docs.aws.amazon.com/bedrock/latest/userguide/conversation-inference-supported-models-features.html

* fix(converse_transformation.py): support amazon nova tool use

* fix(opentelemetry): Add missing LLM request type attribute to spans (#7041)

* feat(opentelemetry): add LLM request type attribute to spans

* lint

* fix: curl usage (#7038)

curl -d, --data <data> is lowercase d
curl -D, --dump-header <filename> is uppercase D

references:
https://curl.se/docs/manpage.html#-d
https://curl.se/docs/manpage.html#-D

* fix(spend_tracking.py): handle empty 'id' in model response - when creating spend log

Fixes https://github.com/BerriAI/litellm/issues/7023

* fix(streaming_chunk_builder.py): handle initial id being empty string

Fixes https://github.com/BerriAI/litellm/issues/7023

* fix(anthropic_passthrough_logging_handler.py): add end user cost tracking for anthropic pass through endpoint

* docs(pass_through/): refactor docs location + add table on supported features for pass through endpoints

* feat(anthropic_passthrough_logging_handler.py): support end user cost tracking via anthropic sdk

* docs(anthropic_completion.md): add docs on passing end user param for cost tracking on anthropic sdk

* fix(litellm_logging.py): use standard logging payload if present in kwargs

prevent datadog logging error for pass through endpoints

* docs(bedrock.md): add rerank api usage example to docs

* bugfix/change dummy tool name format (#7053)

* fix viewing keys (#7042)

* ui new build

* build(model_prices_and_context_window.json): add bedrock region models to model cost map (#7044)

* bye (#6982)

* (fix) litellm router.aspeech  (#6962)

* doc Migrating Databases

* fix aspeech on router

* test_audio_speech_router

* test_audio_speech_router

* docs show supported providers on batches api doc

* change dummy tool name format

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Krish Dholakia <krrishdholakia@gmail.com>
Co-authored-by: yujonglee <yujonglee.dev@gmail.com>

* fix: fix linting errors

* test: update test

* fix(litellm_logging.py): fix pass through check

* fix(test_otel_logging.py): fix test

* fix(cost_calculator.py): update handling for cost per second

* fix(cost_calculator.py): fix cost check

* test: fix test

* (fix) adding public routes when using custom header  (#7045)

* get_api_key_from_custom_header

* add test_get_api_key_from_custom_header

* fix testing use 1 file for test user api key auth

* fix test user api key auth

* test_custom_api_key_header_name

* build: update ui build

---------

Co-authored-by: Doron Kopit <83537683+doronkopit5@users.noreply.github.com>
Co-authored-by: lloydchang <lloydchang@gmail.com>
Co-authored-by: hgulersen <haymigulersen@gmail.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: yujonglee <yujonglee.dev@gmail.com>
2024-12-06 14:29:53 -08:00

149 lines
4.7 KiB
Python

# What is this?
## Unit testing for the 'get_model_info()' function
import os
import sys
import traceback
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest
import litellm
from litellm import get_model_info
from unittest.mock import AsyncMock, MagicMock, patch
def test_get_model_info_simple_model_name():
"""
tests if model name given, and model exists in model info - the object is returned
"""
model = "claude-3-opus-20240229"
litellm.get_model_info(model)
def test_get_model_info_custom_llm_with_model_name():
"""
Tests if {custom_llm_provider}/{model_name} name given, and model exists in model info, the object is returned
"""
model = "anthropic/claude-3-opus-20240229"
litellm.get_model_info(model)
def test_get_model_info_custom_llm_with_same_name_vllm():
"""
Tests if {custom_llm_provider}/{model_name} name given, and model exists in model info, the object is returned
"""
model = "command-r-plus"
provider = "openai" # vllm is openai-compatible
try:
litellm.get_model_info(model, custom_llm_provider=provider)
pytest.fail("Expected get model info to fail for an unmapped model/provider")
except Exception:
pass
def test_get_model_info_shows_correct_supports_vision():
info = litellm.get_model_info("gemini/gemini-1.5-flash")
print("info", info)
assert info["supports_vision"] is True
def test_get_model_info_shows_assistant_prefill():
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
info = litellm.get_model_info("deepseek/deepseek-chat")
print("info", info)
assert info.get("supports_assistant_prefill") is True
def test_get_model_info_shows_supports_prompt_caching():
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
info = litellm.get_model_info("deepseek/deepseek-chat")
print("info", info)
assert info.get("supports_prompt_caching") is True
def test_get_model_info_finetuned_models():
info = litellm.get_model_info("ft:gpt-3.5-turbo:my-org:custom_suffix:id")
print("info", info)
assert info["input_cost_per_token"] == 0.000003
def test_get_model_info_gemini_pro():
info = litellm.get_model_info("gemini-1.5-pro-002")
print("info", info)
assert info["key"] == "gemini-1.5-pro-002"
def test_get_model_info_ollama_chat():
from litellm.llms.ollama import OllamaConfig
with patch.object(
litellm.module_level_client,
"post",
return_value=MagicMock(
json=lambda: {
"model_info": {"llama.context_length": 32768},
"template": "tools",
}
),
) as mock_client:
info = OllamaConfig().get_model_info("mistral")
assert info["supports_function_calling"] is True
info = get_model_info("ollama/mistral")
assert info["supports_function_calling"] is True
mock_client.assert_called()
print(mock_client.call_args.kwargs)
assert mock_client.call_args.kwargs["json"]["name"] == "mistral"
def test_get_model_info_gemini():
"""
Tests if ALL gemini models have 'tpm' and 'rpm' in the model info
"""
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
model_map = litellm.model_cost
for model, info in model_map.items():
if model.startswith("gemini/") and not "gemma" in model:
assert info.get("tpm") is not None, f"{model} does not have tpm"
assert info.get("rpm") is not None, f"{model} does not have rpm"
def test_get_model_info_bedrock_region():
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
args = {
"model": "us.anthropic.claude-3-5-sonnet-20241022-v2:0",
"custom_llm_provider": "bedrock",
}
litellm.model_cost.pop("us.anthropic.claude-3-5-sonnet-20241022-v2:0", None)
info = litellm.get_model_info(**args)
print("info", info)
assert info["key"] == "anthropic.claude-3-5-sonnet-20241022-v2:0"
assert info["litellm_provider"] == "bedrock"
@pytest.mark.parametrize(
"model",
[
"ft:gpt-3.5-turbo:my-org:custom_suffix:id",
"ft:gpt-4-0613:my-org:custom_suffix:id",
"ft:davinci-002:my-org:custom_suffix:id",
"ft:gpt-4-0613:my-org:custom_suffix:id",
"ft:babbage-002:my-org:custom_suffix:id",
"gpt-35-turbo",
"ada",
],
)
def test_get_model_info_completion_cost_unit_tests(model):
info = litellm.get_model_info(model)
print("info", info)