mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 19:54:13 +00:00
* fix(vertex_and_google_ai_studio_gemini.py): log gemini audio tokens in usage object enables accurate cost tracking * refactor(vertex_ai/cost_calculator.py): refactor 128k+ token cost calculation to only run if model info has it Google has moved away from this for gemini-2.0 models * refactor(vertex_ai/cost_calculator.py): migrate to usage object for more flexible data passthrough * fix(llm_cost_calc/utils.py): support audio token cost tracking in generic cost per token enables vertex ai cost tracking to work with audio tokens * fix(llm_cost_calc/utils.py): default to total prompt tokens if text tokens field not set * refactor(llm_cost_calc/utils.py): move openai cost tracking to generic cost per token more consistent behaviour across providers * test: add unit test for gemini audio token cost calculation * ci: bump ci config * test: fix test
267 lines
8.9 KiB
Python
267 lines
8.9 KiB
Python
# What is this?
|
|
## Cost calculation for Google AI Studio / Vertex AI models
|
|
from typing import Literal, Optional, Tuple, Union
|
|
|
|
import litellm
|
|
from litellm import verbose_logger
|
|
from litellm.litellm_core_utils.llm_cost_calc.utils import (
|
|
_is_above_128k,
|
|
generic_cost_per_token,
|
|
)
|
|
from litellm.types.utils import ModelInfo, Usage
|
|
|
|
"""
|
|
Gemini pricing covers:
|
|
- token
|
|
- image
|
|
- audio
|
|
- video
|
|
"""
|
|
|
|
"""
|
|
Vertex AI -> character based pricing
|
|
|
|
Google AI Studio -> token based pricing
|
|
"""
|
|
|
|
models_without_dynamic_pricing = ["gemini-1.0-pro", "gemini-pro", "gemini-2"]
|
|
|
|
|
|
def cost_router(
|
|
model: str,
|
|
custom_llm_provider: str,
|
|
call_type: Union[Literal["embedding", "aembedding"], str],
|
|
) -> Literal["cost_per_character", "cost_per_token"]:
|
|
"""
|
|
Route the cost calc to the right place, based on model/call_type/etc.
|
|
|
|
Returns
|
|
- str, the specific google cost calc function it should route to.
|
|
"""
|
|
if custom_llm_provider == "vertex_ai" and (
|
|
"claude" in model
|
|
or "llama" in model
|
|
or "mistral" in model
|
|
or "jamba" in model
|
|
or "codestral" in model
|
|
):
|
|
return "cost_per_token"
|
|
elif custom_llm_provider == "vertex_ai" and (
|
|
call_type == "embedding" or call_type == "aembedding"
|
|
):
|
|
return "cost_per_token"
|
|
elif custom_llm_provider == "vertex_ai" and ("gemini-2" in model):
|
|
return "cost_per_token"
|
|
return "cost_per_character"
|
|
|
|
|
|
def cost_per_character(
|
|
model: str,
|
|
custom_llm_provider: str,
|
|
usage: Usage,
|
|
prompt_characters: Optional[float] = None,
|
|
completion_characters: Optional[float] = None,
|
|
) -> Tuple[float, float]:
|
|
"""
|
|
Calculates the cost per character for a given VertexAI model, input messages, and response object.
|
|
|
|
Input:
|
|
- model: str, the model name without provider prefix
|
|
- custom_llm_provider: str, "vertex_ai-*"
|
|
- prompt_characters: float, the number of input characters
|
|
- completion_characters: float, the number of output characters
|
|
|
|
Returns:
|
|
Tuple[float, float] - prompt_cost_in_usd, completion_cost_in_usd
|
|
|
|
Raises:
|
|
Exception if model requires >128k pricing, but model cost not mapped
|
|
"""
|
|
model_info = litellm.get_model_info(
|
|
model=model, custom_llm_provider=custom_llm_provider
|
|
)
|
|
|
|
## GET MODEL INFO
|
|
model_info = litellm.get_model_info(
|
|
model=model, custom_llm_provider=custom_llm_provider
|
|
)
|
|
|
|
## CALCULATE INPUT COST
|
|
if prompt_characters is None:
|
|
prompt_cost, _ = cost_per_token(
|
|
model=model,
|
|
custom_llm_provider=custom_llm_provider,
|
|
usage=usage,
|
|
)
|
|
else:
|
|
try:
|
|
if (
|
|
_is_above_128k(tokens=prompt_characters * 4) # 1 token = 4 char
|
|
and model not in models_without_dynamic_pricing
|
|
):
|
|
## check if character pricing, else default to token pricing
|
|
assert (
|
|
"input_cost_per_character_above_128k_tokens" in model_info
|
|
and model_info["input_cost_per_character_above_128k_tokens"]
|
|
is not None
|
|
), "model info for model={} does not have 'input_cost_per_character_above_128k_tokens'-pricing for > 128k tokens\nmodel_info={}".format(
|
|
model, model_info
|
|
)
|
|
prompt_cost = (
|
|
prompt_characters
|
|
* model_info["input_cost_per_character_above_128k_tokens"]
|
|
)
|
|
else:
|
|
assert (
|
|
"input_cost_per_character" in model_info
|
|
and model_info["input_cost_per_character"] is not None
|
|
), "model info for model={} does not have 'input_cost_per_character'-pricing\nmodel_info={}".format(
|
|
model, model_info
|
|
)
|
|
prompt_cost = prompt_characters * model_info["input_cost_per_character"]
|
|
except Exception as e:
|
|
verbose_logger.debug(
|
|
"litellm.litellm_core_utils.llm_cost_calc.google.py::cost_per_character(): Exception occured - {}\nDefaulting to None".format(
|
|
str(e)
|
|
)
|
|
)
|
|
prompt_cost, _ = cost_per_token(
|
|
model=model,
|
|
custom_llm_provider=custom_llm_provider,
|
|
usage=usage,
|
|
)
|
|
|
|
## CALCULATE OUTPUT COST
|
|
if completion_characters is None:
|
|
_, completion_cost = cost_per_token(
|
|
model=model,
|
|
custom_llm_provider=custom_llm_provider,
|
|
usage=usage,
|
|
)
|
|
else:
|
|
completion_tokens = usage.completion_tokens
|
|
try:
|
|
if (
|
|
_is_above_128k(tokens=completion_characters * 4) # 1 token = 4 char
|
|
and model not in models_without_dynamic_pricing
|
|
):
|
|
assert (
|
|
"output_cost_per_character_above_128k_tokens" in model_info
|
|
and model_info["output_cost_per_character_above_128k_tokens"]
|
|
is not None
|
|
), "model info for model={} does not have 'output_cost_per_character_above_128k_tokens' pricing\nmodel_info={}".format(
|
|
model, model_info
|
|
)
|
|
completion_cost = (
|
|
completion_tokens
|
|
* model_info["output_cost_per_character_above_128k_tokens"]
|
|
)
|
|
else:
|
|
assert (
|
|
"output_cost_per_character" in model_info
|
|
and model_info["output_cost_per_character"] is not None
|
|
), "model info for model={} does not have 'output_cost_per_character'-pricing\nmodel_info={}".format(
|
|
model, model_info
|
|
)
|
|
completion_cost = (
|
|
completion_characters * model_info["output_cost_per_character"]
|
|
)
|
|
except Exception as e:
|
|
verbose_logger.debug(
|
|
"litellm.litellm_core_utils.llm_cost_calc.google.py::cost_per_character(): Exception occured - {}\nDefaulting to None".format(
|
|
str(e)
|
|
)
|
|
)
|
|
_, completion_cost = cost_per_token(
|
|
model=model,
|
|
custom_llm_provider=custom_llm_provider,
|
|
usage=usage,
|
|
)
|
|
|
|
return prompt_cost, completion_cost
|
|
|
|
|
|
def _handle_128k_pricing(
|
|
model_info: ModelInfo,
|
|
usage: Usage,
|
|
) -> Tuple[float, float]:
|
|
## CALCULATE INPUT COST
|
|
input_cost_per_token_above_128k_tokens = model_info.get(
|
|
"input_cost_per_token_above_128k_tokens"
|
|
)
|
|
output_cost_per_token_above_128k_tokens = model_info.get(
|
|
"output_cost_per_token_above_128k_tokens"
|
|
)
|
|
|
|
prompt_tokens = usage.prompt_tokens
|
|
completion_tokens = usage.completion_tokens
|
|
|
|
if (
|
|
_is_above_128k(tokens=prompt_tokens)
|
|
and input_cost_per_token_above_128k_tokens is not None
|
|
):
|
|
prompt_cost = prompt_tokens * input_cost_per_token_above_128k_tokens
|
|
else:
|
|
prompt_cost = prompt_tokens * model_info["input_cost_per_token"]
|
|
|
|
## CALCULATE OUTPUT COST
|
|
output_cost_per_token_above_128k_tokens = model_info.get(
|
|
"output_cost_per_token_above_128k_tokens"
|
|
)
|
|
if (
|
|
_is_above_128k(tokens=completion_tokens)
|
|
and output_cost_per_token_above_128k_tokens is not None
|
|
):
|
|
completion_cost = completion_tokens * output_cost_per_token_above_128k_tokens
|
|
else:
|
|
completion_cost = completion_tokens * model_info["output_cost_per_token"]
|
|
|
|
return prompt_cost, completion_cost
|
|
|
|
|
|
def cost_per_token(
|
|
model: str,
|
|
custom_llm_provider: str,
|
|
usage: Usage,
|
|
) -> Tuple[float, float]:
|
|
"""
|
|
Calculates the cost per token for a given model, prompt tokens, and completion tokens.
|
|
|
|
Input:
|
|
- model: str, the model name without provider prefix
|
|
- custom_llm_provider: str, either "vertex_ai-*" or "gemini"
|
|
- prompt_tokens: float, the number of input tokens
|
|
- completion_tokens: float, the number of output tokens
|
|
|
|
Returns:
|
|
Tuple[float, float] - prompt_cost_in_usd, completion_cost_in_usd
|
|
|
|
Raises:
|
|
Exception if model requires >128k pricing, but model cost not mapped
|
|
"""
|
|
## GET MODEL INFO
|
|
model_info = litellm.get_model_info(
|
|
model=model, custom_llm_provider=custom_llm_provider
|
|
)
|
|
|
|
## HANDLE 128k+ PRICING
|
|
input_cost_per_token_above_128k_tokens = model_info.get(
|
|
"input_cost_per_token_above_128k_tokens"
|
|
)
|
|
output_cost_per_token_above_128k_tokens = model_info.get(
|
|
"output_cost_per_token_above_128k_tokens"
|
|
)
|
|
if (
|
|
input_cost_per_token_above_128k_tokens is not None
|
|
or output_cost_per_token_above_128k_tokens is not None
|
|
):
|
|
return _handle_128k_pricing(
|
|
model_info=model_info,
|
|
usage=usage,
|
|
)
|
|
|
|
return generic_cost_per_token(
|
|
model=model,
|
|
custom_llm_provider=custom_llm_provider,
|
|
usage=usage,
|
|
)
|