litellm-mirror/litellm/caching/caching.py
Ishaan Jaff 979e8ea526
(refactor) get_cache_key to be under 100 LOC function (#6327)
* refactor - use helpers for name space and hashing

* use openai to get the relevant supported params

* use helpers for getting cache key

* fix test caching

* use get/set helpers for preset cache keys

* make get_cache_key under 100 LOC

* fix _get_model_param_value

* fix _get_caching_group

* fix linting error

* add unit testing for get cache key

* test_generate_streaming_content
2024-10-19 15:21:11 +05:30

871 lines
33 KiB
Python

# +-----------------------------------------------+
# | |
# | Give Feedback / Get Help |
# | https://github.com/BerriAI/litellm/issues/new |
# | |
# +-----------------------------------------------+
#
# Thank you users! We ❤️ you! - Krrish & Ishaan
import ast
import asyncio
import hashlib
import inspect
import io
import json
import logging
import time
import traceback
from enum import Enum
from typing import Any, Dict, List, Literal, Optional, Set, Tuple, Union
from openai.types.audio.transcription_create_params import TranscriptionCreateParams
from openai.types.chat.completion_create_params import (
CompletionCreateParamsNonStreaming,
CompletionCreateParamsStreaming,
)
from openai.types.completion_create_params import (
CompletionCreateParamsNonStreaming as TextCompletionCreateParamsNonStreaming,
)
from openai.types.completion_create_params import (
CompletionCreateParamsStreaming as TextCompletionCreateParamsStreaming,
)
from openai.types.embedding_create_params import EmbeddingCreateParams
from pydantic import BaseModel
import litellm
from litellm._logging import verbose_logger
from litellm.types.caching import *
from litellm.types.rerank import RerankRequest
from litellm.types.utils import all_litellm_params
from .base_cache import BaseCache
from .disk_cache import DiskCache
from .dual_cache import DualCache
from .in_memory_cache import InMemoryCache
from .qdrant_semantic_cache import QdrantSemanticCache
from .redis_cache import RedisCache
from .redis_semantic_cache import RedisSemanticCache
from .s3_cache import S3Cache
def print_verbose(print_statement):
try:
verbose_logger.debug(print_statement)
if litellm.set_verbose:
print(print_statement) # noqa
except Exception:
pass
class CacheMode(str, Enum):
default_on = "default_on"
default_off = "default_off"
#### LiteLLM.Completion / Embedding Cache ####
class Cache:
def __init__(
self,
type: Optional[LiteLLMCacheType] = LiteLLMCacheType.LOCAL,
mode: Optional[
CacheMode
] = CacheMode.default_on, # when default_on cache is always on, when default_off cache is opt in
host: Optional[str] = None,
port: Optional[str] = None,
password: Optional[str] = None,
namespace: Optional[str] = None,
ttl: Optional[float] = None,
default_in_memory_ttl: Optional[float] = None,
default_in_redis_ttl: Optional[float] = None,
similarity_threshold: Optional[float] = None,
supported_call_types: Optional[List[CachingSupportedCallTypes]] = [
"completion",
"acompletion",
"embedding",
"aembedding",
"atranscription",
"transcription",
"atext_completion",
"text_completion",
"arerank",
"rerank",
],
# s3 Bucket, boto3 configuration
s3_bucket_name: Optional[str] = None,
s3_region_name: Optional[str] = None,
s3_api_version: Optional[str] = None,
s3_use_ssl: Optional[bool] = True,
s3_verify: Optional[Union[bool, str]] = None,
s3_endpoint_url: Optional[str] = None,
s3_aws_access_key_id: Optional[str] = None,
s3_aws_secret_access_key: Optional[str] = None,
s3_aws_session_token: Optional[str] = None,
s3_config: Optional[Any] = None,
s3_path: Optional[str] = None,
redis_semantic_cache_use_async=False,
redis_semantic_cache_embedding_model="text-embedding-ada-002",
redis_flush_size: Optional[int] = None,
redis_startup_nodes: Optional[List] = None,
disk_cache_dir=None,
qdrant_api_base: Optional[str] = None,
qdrant_api_key: Optional[str] = None,
qdrant_collection_name: Optional[str] = None,
qdrant_quantization_config: Optional[str] = None,
qdrant_semantic_cache_embedding_model="text-embedding-ada-002",
**kwargs,
):
"""
Initializes the cache based on the given type.
Args:
type (str, optional): The type of cache to initialize. Can be "local", "redis", "redis-semantic", "qdrant-semantic", "s3" or "disk". Defaults to "local".
# Redis Cache Args
host (str, optional): The host address for the Redis cache. Required if type is "redis".
port (int, optional): The port number for the Redis cache. Required if type is "redis".
password (str, optional): The password for the Redis cache. Required if type is "redis".
namespace (str, optional): The namespace for the Redis cache. Required if type is "redis".
ttl (float, optional): The ttl for the Redis cache
redis_flush_size (int, optional): The number of keys to flush at a time. Defaults to 1000. Only used if batch redis set caching is used.
redis_startup_nodes (list, optional): The list of startup nodes for the Redis cache. Defaults to None.
# Qdrant Cache Args
qdrant_api_base (str, optional): The url for your qdrant cluster. Required if type is "qdrant-semantic".
qdrant_api_key (str, optional): The api_key for the local or cloud qdrant cluster.
qdrant_collection_name (str, optional): The name for your qdrant collection. Required if type is "qdrant-semantic".
similarity_threshold (float, optional): The similarity threshold for semantic-caching, Required if type is "redis-semantic" or "qdrant-semantic".
# Disk Cache Args
disk_cache_dir (str, optional): The directory for the disk cache. Defaults to None.
# S3 Cache Args
s3_bucket_name (str, optional): The bucket name for the s3 cache. Defaults to None.
s3_region_name (str, optional): The region name for the s3 cache. Defaults to None.
s3_api_version (str, optional): The api version for the s3 cache. Defaults to None.
s3_use_ssl (bool, optional): The use ssl for the s3 cache. Defaults to True.
s3_verify (bool, optional): The verify for the s3 cache. Defaults to None.
s3_endpoint_url (str, optional): The endpoint url for the s3 cache. Defaults to None.
s3_aws_access_key_id (str, optional): The aws access key id for the s3 cache. Defaults to None.
s3_aws_secret_access_key (str, optional): The aws secret access key for the s3 cache. Defaults to None.
s3_aws_session_token (str, optional): The aws session token for the s3 cache. Defaults to None.
s3_config (dict, optional): The config for the s3 cache. Defaults to None.
# Common Cache Args
supported_call_types (list, optional): List of call types to cache for. Defaults to cache == on for all call types.
**kwargs: Additional keyword arguments for redis.Redis() cache
Raises:
ValueError: If an invalid cache type is provided.
Returns:
None. Cache is set as a litellm param
"""
if type == LiteLLMCacheType.REDIS:
self.cache: BaseCache = RedisCache(
host=host,
port=port,
password=password,
redis_flush_size=redis_flush_size,
startup_nodes=redis_startup_nodes,
**kwargs,
)
elif type == LiteLLMCacheType.REDIS_SEMANTIC:
self.cache = RedisSemanticCache(
host=host,
port=port,
password=password,
similarity_threshold=similarity_threshold,
use_async=redis_semantic_cache_use_async,
embedding_model=redis_semantic_cache_embedding_model,
**kwargs,
)
elif type == LiteLLMCacheType.QDRANT_SEMANTIC:
self.cache = QdrantSemanticCache(
qdrant_api_base=qdrant_api_base,
qdrant_api_key=qdrant_api_key,
collection_name=qdrant_collection_name,
similarity_threshold=similarity_threshold,
quantization_config=qdrant_quantization_config,
embedding_model=qdrant_semantic_cache_embedding_model,
)
elif type == LiteLLMCacheType.LOCAL:
self.cache = InMemoryCache()
elif type == LiteLLMCacheType.S3:
self.cache = S3Cache(
s3_bucket_name=s3_bucket_name,
s3_region_name=s3_region_name,
s3_api_version=s3_api_version,
s3_use_ssl=s3_use_ssl,
s3_verify=s3_verify,
s3_endpoint_url=s3_endpoint_url,
s3_aws_access_key_id=s3_aws_access_key_id,
s3_aws_secret_access_key=s3_aws_secret_access_key,
s3_aws_session_token=s3_aws_session_token,
s3_config=s3_config,
s3_path=s3_path,
**kwargs,
)
elif type == LiteLLMCacheType.DISK:
self.cache = DiskCache(disk_cache_dir=disk_cache_dir)
if "cache" not in litellm.input_callback:
litellm.input_callback.append("cache")
if "cache" not in litellm.success_callback:
litellm.success_callback.append("cache")
if "cache" not in litellm._async_success_callback:
litellm._async_success_callback.append("cache")
self.supported_call_types = supported_call_types # default to ["completion", "acompletion", "embedding", "aembedding"]
self.type = type
self.namespace = namespace
self.redis_flush_size = redis_flush_size
self.ttl = ttl
self.mode: CacheMode = mode or CacheMode.default_on
if self.type == LiteLLMCacheType.LOCAL and default_in_memory_ttl is not None:
self.ttl = default_in_memory_ttl
if (
self.type == LiteLLMCacheType.REDIS
or self.type == LiteLLMCacheType.REDIS_SEMANTIC
) and default_in_redis_ttl is not None:
self.ttl = default_in_redis_ttl
if self.namespace is not None and isinstance(self.cache, RedisCache):
self.cache.namespace = self.namespace
def get_cache_key(self, *args, **kwargs) -> str:
"""
Get the cache key for the given arguments.
Args:
*args: args to litellm.completion() or embedding()
**kwargs: kwargs to litellm.completion() or embedding()
Returns:
str: The cache key generated from the arguments, or None if no cache key could be generated.
"""
cache_key = ""
verbose_logger.debug("\nGetting Cache key. Kwargs: %s", kwargs)
preset_cache_key = self._get_preset_cache_key_from_kwargs(**kwargs)
if preset_cache_key is not None:
verbose_logger.debug("\nReturning preset cache key: %s", preset_cache_key)
return preset_cache_key
combined_kwargs = self._get_relevant_args_to_use_for_cache_key()
litellm_param_kwargs = all_litellm_params
for param in kwargs:
if param in combined_kwargs:
param_value: Optional[str] = self._get_param_value(param, kwargs)
if param_value is not None:
cache_key += f"{str(param)}: {str(param_value)}"
elif (
param not in litellm_param_kwargs
): # check if user passed in optional param - e.g. top_k
if (
litellm.enable_caching_on_provider_specific_optional_params is True
): # feature flagged for now
if kwargs[param] is None:
continue # ignore None params
param_value = kwargs[param]
cache_key += f"{str(param)}: {str(param_value)}"
verbose_logger.debug("\nCreated cache key: %s", cache_key)
hashed_cache_key = self._get_hashed_cache_key(cache_key)
hashed_cache_key = self._add_redis_namespace_to_cache_key(
hashed_cache_key, **kwargs
)
self._set_preset_cache_key_in_kwargs(
preset_cache_key=hashed_cache_key, **kwargs
)
return hashed_cache_key
def _get_param_value(
self,
param: str,
kwargs: dict,
) -> Optional[str]:
"""
Get the value for the given param from kwargs
"""
if param == "model":
return self._get_model_param_value(kwargs)
elif param == "file":
return self._get_file_param_value(kwargs)
return kwargs[param]
def _get_model_param_value(self, kwargs: dict) -> str:
"""
Handles getting the value for the 'model' param from kwargs
1. If caching groups are set, then return the caching group as the model https://docs.litellm.ai/docs/routing#caching-across-model-groups
2. Else if a model_group is set, then return the model_group as the model. This is used for all requests sent through the litellm.Router()
3. Else use the `model` passed in kwargs
"""
metadata: Dict = kwargs.get("metadata", {}) or {}
litellm_params: Dict = kwargs.get("litellm_params", {}) or {}
metadata_in_litellm_params: Dict = litellm_params.get("metadata", {}) or {}
model_group: Optional[str] = metadata.get(
"model_group"
) or metadata_in_litellm_params.get("model_group")
caching_group = self._get_caching_group(metadata, model_group)
return caching_group or model_group or kwargs["model"]
def _get_caching_group(
self, metadata: dict, model_group: Optional[str]
) -> Optional[str]:
caching_groups: Optional[List] = metadata.get("caching_groups", [])
if caching_groups:
for group in caching_groups:
if model_group in group:
return str(group)
return None
def _get_file_param_value(self, kwargs: dict) -> str:
"""
Handles getting the value for the 'file' param from kwargs. Used for `transcription` requests
"""
file = kwargs.get("file")
metadata = kwargs.get("metadata", {})
litellm_params = kwargs.get("litellm_params", {})
return (
metadata.get("file_checksum")
or getattr(file, "name", None)
or metadata.get("file_name")
or litellm_params.get("file_name")
)
def _get_preset_cache_key_from_kwargs(self, **kwargs) -> Optional[str]:
"""
Get the preset cache key from kwargs["litellm_params"]
We use _get_preset_cache_keys for two reasons
1. optional params like max_tokens, get transformed for bedrock -> max_new_tokens
2. avoid doing duplicate / repeated work
"""
if kwargs:
if "litellm_params" in kwargs:
return kwargs["litellm_params"].get("preset_cache_key", None)
return None
def _set_preset_cache_key_in_kwargs(self, preset_cache_key: str, **kwargs) -> None:
"""
Set the calculated cache key in kwargs
This is used to avoid doing duplicate / repeated work
Placed in kwargs["litellm_params"]
"""
if kwargs:
if "litellm_params" in kwargs:
kwargs["litellm_params"]["preset_cache_key"] = preset_cache_key
def _get_relevant_args_to_use_for_cache_key(self) -> Set[str]:
"""
Gets the supported kwargs for each call type and combines them
"""
chat_completion_kwargs = self._get_litellm_supported_chat_completion_kwargs()
text_completion_kwargs = self._get_litellm_supported_text_completion_kwargs()
embedding_kwargs = self._get_litellm_supported_embedding_kwargs()
transcription_kwargs = self._get_litellm_supported_transcription_kwargs()
rerank_kwargs = self._get_litellm_supported_rerank_kwargs()
exclude_kwargs = self._get_kwargs_to_exclude_from_cache_key()
combined_kwargs = chat_completion_kwargs.union(
text_completion_kwargs,
embedding_kwargs,
transcription_kwargs,
rerank_kwargs,
)
combined_kwargs = combined_kwargs.difference(exclude_kwargs)
return combined_kwargs
def _get_litellm_supported_chat_completion_kwargs(self) -> Set[str]:
"""
Get the litellm supported chat completion kwargs
This follows the OpenAI API Spec
"""
all_chat_completion_kwargs = set(
CompletionCreateParamsNonStreaming.__annotations__.keys()
).union(set(CompletionCreateParamsStreaming.__annotations__.keys()))
return all_chat_completion_kwargs
def _get_litellm_supported_text_completion_kwargs(self) -> Set[str]:
"""
Get the litellm supported text completion kwargs
This follows the OpenAI API Spec
"""
all_text_completion_kwargs = set(
TextCompletionCreateParamsNonStreaming.__annotations__.keys()
).union(set(TextCompletionCreateParamsStreaming.__annotations__.keys()))
return all_text_completion_kwargs
def _get_litellm_supported_rerank_kwargs(self) -> Set[str]:
"""
Get the litellm supported rerank kwargs
"""
return set(RerankRequest.model_fields.keys())
def _get_litellm_supported_embedding_kwargs(self) -> Set[str]:
"""
Get the litellm supported embedding kwargs
This follows the OpenAI API Spec
"""
return set(EmbeddingCreateParams.__annotations__.keys())
def _get_litellm_supported_transcription_kwargs(self) -> Set[str]:
"""
Get the litellm supported transcription kwargs
This follows the OpenAI API Spec
"""
return set(TranscriptionCreateParams.__annotations__.keys())
def _get_kwargs_to_exclude_from_cache_key(self) -> Set[str]:
"""
Get the kwargs to exclude from the cache key
"""
return set(["metadata"])
def _get_hashed_cache_key(self, cache_key: str) -> str:
"""
Get the hashed cache key for the given cache key.
Use hashlib to create a sha256 hash of the cache key
Args:
cache_key (str): The cache key to hash.
Returns:
str: The hashed cache key.
"""
hash_object = hashlib.sha256(cache_key.encode())
# Hexadecimal representation of the hash
hash_hex = hash_object.hexdigest()
verbose_logger.debug("Hashed cache key (SHA-256): %s", hash_hex)
return hash_hex
def _add_redis_namespace_to_cache_key(self, hash_hex: str, **kwargs) -> str:
"""
If a redis namespace is provided, add it to the cache key
Args:
hash_hex (str): The hashed cache key.
**kwargs: Additional keyword arguments.
Returns:
str: The final hashed cache key with the redis namespace.
"""
namespace = kwargs.get("metadata", {}).get("redis_namespace") or self.namespace
if namespace:
hash_hex = f"{namespace}:{hash_hex}"
verbose_logger.debug("Final hashed key: %s", hash_hex)
return hash_hex
def generate_streaming_content(self, content):
chunk_size = 5 # Adjust the chunk size as needed
for i in range(0, len(content), chunk_size):
yield {
"choices": [
{
"delta": {
"role": "assistant",
"content": content[i : i + chunk_size],
}
}
]
}
time.sleep(0.02)
def _get_cache_logic(
self,
cached_result: Optional[Any],
max_age: Optional[float],
):
"""
Common get cache logic across sync + async implementations
"""
# Check if a timestamp was stored with the cached response
if (
cached_result is not None
and isinstance(cached_result, dict)
and "timestamp" in cached_result
):
timestamp = cached_result["timestamp"]
current_time = time.time()
# Calculate age of the cached response
response_age = current_time - timestamp
# Check if the cached response is older than the max-age
if max_age is not None and response_age > max_age:
return None # Cached response is too old
# If the response is fresh, or there's no max-age requirement, return the cached response
# cached_response is in `b{} convert it to ModelResponse
cached_response = cached_result.get("response")
try:
if isinstance(cached_response, dict):
pass
else:
cached_response = json.loads(
cached_response # type: ignore
) # Convert string to dictionary
except Exception:
cached_response = ast.literal_eval(cached_response) # type: ignore
return cached_response
return cached_result
def get_cache(self, *args, **kwargs):
"""
Retrieves the cached result for the given arguments.
Args:
*args: args to litellm.completion() or embedding()
**kwargs: kwargs to litellm.completion() or embedding()
Returns:
The cached result if it exists, otherwise None.
"""
try: # never block execution
if self.should_use_cache(*args, **kwargs) is not True:
return
messages = kwargs.get("messages", [])
if "cache_key" in kwargs:
cache_key = kwargs["cache_key"]
else:
cache_key = self.get_cache_key(*args, **kwargs)
if cache_key is not None:
cache_control_args = kwargs.get("cache", {})
max_age = cache_control_args.get(
"s-max-age", cache_control_args.get("s-maxage", float("inf"))
)
cached_result = self.cache.get_cache(cache_key, messages=messages)
return self._get_cache_logic(
cached_result=cached_result, max_age=max_age
)
except Exception:
print_verbose(f"An exception occurred: {traceback.format_exc()}")
return None
async def async_get_cache(self, *args, **kwargs):
"""
Async get cache implementation.
Used for embedding calls in async wrapper
"""
try: # never block execution
if self.should_use_cache(*args, **kwargs) is not True:
return
kwargs.get("messages", [])
if "cache_key" in kwargs:
cache_key = kwargs["cache_key"]
else:
cache_key = self.get_cache_key(*args, **kwargs)
if cache_key is not None:
cache_control_args = kwargs.get("cache", {})
max_age = cache_control_args.get(
"s-max-age", cache_control_args.get("s-maxage", float("inf"))
)
cached_result = await self.cache.async_get_cache(
cache_key, *args, **kwargs
)
return self._get_cache_logic(
cached_result=cached_result, max_age=max_age
)
except Exception:
print_verbose(f"An exception occurred: {traceback.format_exc()}")
return None
def _add_cache_logic(self, result, *args, **kwargs):
"""
Common implementation across sync + async add_cache functions
"""
try:
if "cache_key" in kwargs:
cache_key = kwargs["cache_key"]
else:
cache_key = self.get_cache_key(*args, **kwargs)
if cache_key is not None:
if isinstance(result, BaseModel):
result = result.model_dump_json()
## DEFAULT TTL ##
if self.ttl is not None:
kwargs["ttl"] = self.ttl
## Get Cache-Controls ##
_cache_kwargs = kwargs.get("cache", None)
if isinstance(_cache_kwargs, dict):
for k, v in _cache_kwargs.items():
if k == "ttl":
kwargs["ttl"] = v
cached_data = {"timestamp": time.time(), "response": result}
return cache_key, cached_data, kwargs
else:
raise Exception("cache key is None")
except Exception as e:
raise e
def add_cache(self, result, *args, **kwargs):
"""
Adds a result to the cache.
Args:
*args: args to litellm.completion() or embedding()
**kwargs: kwargs to litellm.completion() or embedding()
Returns:
None
"""
try:
if self.should_use_cache(*args, **kwargs) is not True:
return
cache_key, cached_data, kwargs = self._add_cache_logic(
result=result, *args, **kwargs
)
self.cache.set_cache(cache_key, cached_data, **kwargs)
except Exception as e:
verbose_logger.exception(f"LiteLLM Cache: Excepton add_cache: {str(e)}")
async def async_add_cache(self, result, *args, **kwargs):
"""
Async implementation of add_cache
"""
try:
if self.should_use_cache(*args, **kwargs) is not True:
return
if self.type == "redis" and self.redis_flush_size is not None:
# high traffic - fill in results in memory and then flush
await self.batch_cache_write(result, *args, **kwargs)
else:
cache_key, cached_data, kwargs = self._add_cache_logic(
result=result, *args, **kwargs
)
await self.cache.async_set_cache(cache_key, cached_data, **kwargs)
except Exception as e:
verbose_logger.exception(f"LiteLLM Cache: Excepton add_cache: {str(e)}")
async def async_add_cache_pipeline(self, result, *args, **kwargs):
"""
Async implementation of add_cache for Embedding calls
Does a bulk write, to prevent using too many clients
"""
try:
if self.should_use_cache(*args, **kwargs) is not True:
return
# set default ttl if not set
if self.ttl is not None:
kwargs["ttl"] = self.ttl
cache_list = []
for idx, i in enumerate(kwargs["input"]):
preset_cache_key = self.get_cache_key(*args, **{**kwargs, "input": i})
kwargs["cache_key"] = preset_cache_key
embedding_response = result.data[idx]
cache_key, cached_data, kwargs = self._add_cache_logic(
result=embedding_response,
*args,
**kwargs,
)
cache_list.append((cache_key, cached_data))
async_set_cache_pipeline = getattr(
self.cache, "async_set_cache_pipeline", None
)
if async_set_cache_pipeline:
await async_set_cache_pipeline(cache_list=cache_list, **kwargs)
else:
tasks = []
for val in cache_list:
tasks.append(self.cache.async_set_cache(val[0], val[1], **kwargs))
await asyncio.gather(*tasks)
except Exception as e:
verbose_logger.exception(f"LiteLLM Cache: Excepton add_cache: {str(e)}")
def should_use_cache(self, *args, **kwargs):
"""
Returns true if we should use the cache for LLM API calls
If cache is default_on then this is True
If cache is default_off then this is only true when user has opted in to use cache
"""
if self.mode == CacheMode.default_on:
return True
# when mode == default_off -> Cache is opt in only
_cache = kwargs.get("cache", None)
verbose_logger.debug("should_use_cache: kwargs: %s; _cache: %s", kwargs, _cache)
if _cache and isinstance(_cache, dict):
if _cache.get("use-cache", False) is True:
return True
return False
async def batch_cache_write(self, result, *args, **kwargs):
cache_key, cached_data, kwargs = self._add_cache_logic(
result=result, *args, **kwargs
)
await self.cache.batch_cache_write(cache_key, cached_data, **kwargs)
async def ping(self):
cache_ping = getattr(self.cache, "ping")
if cache_ping:
return await cache_ping()
return None
async def delete_cache_keys(self, keys):
cache_delete_cache_keys = getattr(self.cache, "delete_cache_keys")
if cache_delete_cache_keys:
return await cache_delete_cache_keys(keys)
return None
async def disconnect(self):
if hasattr(self.cache, "disconnect"):
await self.cache.disconnect()
def _supports_async(self) -> bool:
"""
Internal method to check if the cache type supports async get/set operations
Only S3 Cache Does NOT support async operations
"""
if self.type and self.type == LiteLLMCacheType.S3:
return False
return True
def enable_cache(
type: Optional[LiteLLMCacheType] = LiteLLMCacheType.LOCAL,
host: Optional[str] = None,
port: Optional[str] = None,
password: Optional[str] = None,
supported_call_types: Optional[List[CachingSupportedCallTypes]] = [
"completion",
"acompletion",
"embedding",
"aembedding",
"atranscription",
"transcription",
"atext_completion",
"text_completion",
"arerank",
"rerank",
],
**kwargs,
):
"""
Enable cache with the specified configuration.
Args:
type (Optional[Literal["local", "redis", "s3", "disk"]]): The type of cache to enable. Defaults to "local".
host (Optional[str]): The host address of the cache server. Defaults to None.
port (Optional[str]): The port number of the cache server. Defaults to None.
password (Optional[str]): The password for the cache server. Defaults to None.
supported_call_types (Optional[List[Literal["completion", "acompletion", "embedding", "aembedding"]]]):
The supported call types for the cache. Defaults to ["completion", "acompletion", "embedding", "aembedding"].
**kwargs: Additional keyword arguments.
Returns:
None
Raises:
None
"""
print_verbose("LiteLLM: Enabling Cache")
if "cache" not in litellm.input_callback:
litellm.input_callback.append("cache")
if "cache" not in litellm.success_callback:
litellm.success_callback.append("cache")
if "cache" not in litellm._async_success_callback:
litellm._async_success_callback.append("cache")
if litellm.cache is None:
litellm.cache = Cache(
type=type,
host=host,
port=port,
password=password,
supported_call_types=supported_call_types,
**kwargs,
)
print_verbose(f"LiteLLM: Cache enabled, litellm.cache={litellm.cache}")
print_verbose(f"LiteLLM Cache: {vars(litellm.cache)}")
def update_cache(
type: Optional[LiteLLMCacheType] = LiteLLMCacheType.LOCAL,
host: Optional[str] = None,
port: Optional[str] = None,
password: Optional[str] = None,
supported_call_types: Optional[List[CachingSupportedCallTypes]] = [
"completion",
"acompletion",
"embedding",
"aembedding",
"atranscription",
"transcription",
"atext_completion",
"text_completion",
"arerank",
"rerank",
],
**kwargs,
):
"""
Update the cache for LiteLLM.
Args:
type (Optional[Literal["local", "redis", "s3", "disk"]]): The type of cache. Defaults to "local".
host (Optional[str]): The host of the cache. Defaults to None.
port (Optional[str]): The port of the cache. Defaults to None.
password (Optional[str]): The password for the cache. Defaults to None.
supported_call_types (Optional[List[Literal["completion", "acompletion", "embedding", "aembedding"]]]):
The supported call types for the cache. Defaults to ["completion", "acompletion", "embedding", "aembedding"].
**kwargs: Additional keyword arguments for the cache.
Returns:
None
"""
print_verbose("LiteLLM: Updating Cache")
litellm.cache = Cache(
type=type,
host=host,
port=port,
password=password,
supported_call_types=supported_call_types,
**kwargs,
)
print_verbose(f"LiteLLM: Cache Updated, litellm.cache={litellm.cache}")
print_verbose(f"LiteLLM Cache: {vars(litellm.cache)}")
def disable_cache():
"""
Disable the cache used by LiteLLM.
This function disables the cache used by the LiteLLM module. It removes the cache-related callbacks from the input_callback, success_callback, and _async_success_callback lists. It also sets the litellm.cache attribute to None.
Parameters:
None
Returns:
None
"""
from contextlib import suppress
print_verbose("LiteLLM: Disabling Cache")
with suppress(ValueError):
litellm.input_callback.remove("cache")
litellm.success_callback.remove("cache")
litellm._async_success_callback.remove("cache")
litellm.cache = None
print_verbose(f"LiteLLM: Cache disabled, litellm.cache={litellm.cache}")