mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
* fix move base_aws_llm * fix import * update enforce llms folder style * move prompt_templates * update prompt_templates location * fix imports * fix imports * fix imports * fix imports * fix checks
454 lines
15 KiB
Python
454 lines
15 KiB
Python
import json
|
||
import os
|
||
import sys
|
||
import traceback
|
||
|
||
from dotenv import load_dotenv
|
||
|
||
load_dotenv()
|
||
import io
|
||
import os
|
||
|
||
from test_streaming import streaming_format_tests
|
||
|
||
sys.path.insert(
|
||
0, os.path.abspath("../..")
|
||
) # Adds the parent directory to the system path
|
||
|
||
import os
|
||
from unittest.mock import AsyncMock, MagicMock, patch
|
||
|
||
import pytest
|
||
|
||
import litellm
|
||
from litellm import RateLimitError, Timeout, completion, completion_cost, embedding
|
||
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
||
from litellm.litellm_core_utils.prompt_templates.factory import anthropic_messages_pt
|
||
|
||
# litellm.num_retries =3
|
||
litellm.cache = None
|
||
litellm.success_callback = []
|
||
user_message = "Write a short poem about the sky"
|
||
messages = [{"content": user_message, "role": "user"}]
|
||
import logging
|
||
|
||
from litellm._logging import verbose_logger
|
||
|
||
|
||
def logger_fn(user_model_dict):
|
||
print(f"user_model_dict: {user_model_dict}")
|
||
|
||
|
||
@pytest.fixture(autouse=True)
|
||
def reset_callbacks():
|
||
print("\npytest fixture - resetting callbacks")
|
||
litellm.success_callback = []
|
||
litellm._async_success_callback = []
|
||
litellm.failure_callback = []
|
||
litellm.callbacks = []
|
||
|
||
|
||
@pytest.mark.asyncio()
|
||
@pytest.mark.parametrize("sync_mode", [True, False])
|
||
async def test_completion_sagemaker(sync_mode):
|
||
try:
|
||
litellm.set_verbose = True
|
||
verbose_logger.setLevel(logging.DEBUG)
|
||
print("testing sagemaker")
|
||
if sync_mode is True:
|
||
response = litellm.completion(
|
||
model="sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
|
||
messages=[
|
||
{"role": "user", "content": "hi"},
|
||
],
|
||
temperature=0.2,
|
||
max_tokens=80,
|
||
input_cost_per_second=0.000420,
|
||
)
|
||
else:
|
||
response = await litellm.acompletion(
|
||
model="sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
|
||
messages=[
|
||
{"role": "user", "content": "hi"},
|
||
],
|
||
temperature=0.2,
|
||
max_tokens=80,
|
||
input_cost_per_second=0.000420,
|
||
)
|
||
# Add any assertions here to check the response
|
||
print(response)
|
||
cost = completion_cost(completion_response=response)
|
||
print("calculated cost", cost)
|
||
assert (
|
||
cost > 0.0 and cost < 1.0
|
||
) # should never be > $1 for a single completion call
|
||
except Exception as e:
|
||
pytest.fail(f"Error occurred: {e}")
|
||
|
||
|
||
@pytest.mark.asyncio()
|
||
@pytest.mark.parametrize(
|
||
"sync_mode",
|
||
[True, False],
|
||
)
|
||
async def test_completion_sagemaker_messages_api(sync_mode):
|
||
try:
|
||
litellm.set_verbose = True
|
||
verbose_logger.setLevel(logging.DEBUG)
|
||
print("testing sagemaker")
|
||
if sync_mode is True:
|
||
resp = litellm.completion(
|
||
model="sagemaker_chat/huggingface-pytorch-tgi-inference-2024-08-23-15-48-59-245",
|
||
messages=[
|
||
{"role": "user", "content": "hi"},
|
||
],
|
||
temperature=0.2,
|
||
max_tokens=80,
|
||
)
|
||
print(resp)
|
||
else:
|
||
resp = await litellm.acompletion(
|
||
model="sagemaker_chat/huggingface-pytorch-tgi-inference-2024-08-23-15-48-59-245",
|
||
messages=[
|
||
{"role": "user", "content": "hi"},
|
||
],
|
||
temperature=0.2,
|
||
max_tokens=80,
|
||
)
|
||
print(resp)
|
||
except Exception as e:
|
||
pytest.fail(f"Error occurred: {e}")
|
||
|
||
|
||
@pytest.mark.asyncio()
|
||
@pytest.mark.parametrize("sync_mode", [False, True])
|
||
@pytest.mark.parametrize(
|
||
"model",
|
||
[
|
||
"sagemaker_chat/huggingface-pytorch-tgi-inference-2024-08-23-15-48-59-245",
|
||
"sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
|
||
],
|
||
)
|
||
# @pytest.mark.flaky(retries=3, delay=1)
|
||
async def test_completion_sagemaker_stream(sync_mode, model):
|
||
try:
|
||
litellm.set_verbose = False
|
||
print("testing sagemaker")
|
||
verbose_logger.setLevel(logging.DEBUG)
|
||
full_text = ""
|
||
if sync_mode is True:
|
||
response = litellm.completion(
|
||
model=model,
|
||
messages=[
|
||
{"role": "user", "content": "hi - what is ur name"},
|
||
],
|
||
temperature=0.2,
|
||
stream=True,
|
||
max_tokens=80,
|
||
input_cost_per_second=0.000420,
|
||
)
|
||
|
||
for idx, chunk in enumerate(response):
|
||
print(chunk)
|
||
streaming_format_tests(idx=idx, chunk=chunk)
|
||
full_text += chunk.choices[0].delta.content or ""
|
||
|
||
print("SYNC RESPONSE full text", full_text)
|
||
else:
|
||
response = await litellm.acompletion(
|
||
model=model,
|
||
messages=[
|
||
{"role": "user", "content": "hi - what is ur name"},
|
||
],
|
||
stream=True,
|
||
temperature=0.2,
|
||
max_tokens=80,
|
||
input_cost_per_second=0.000420,
|
||
)
|
||
|
||
print("streaming response")
|
||
idx = 0
|
||
async for chunk in response:
|
||
print(chunk)
|
||
streaming_format_tests(idx=idx, chunk=chunk)
|
||
full_text += chunk.choices[0].delta.content or ""
|
||
idx += 1
|
||
|
||
print("ASYNC RESPONSE full text", full_text)
|
||
|
||
except Exception as e:
|
||
pytest.fail(f"Error occurred: {e}")
|
||
|
||
|
||
@pytest.mark.asyncio()
|
||
@pytest.mark.parametrize("sync_mode", [False, True])
|
||
@pytest.mark.parametrize(
|
||
"model",
|
||
[
|
||
"sagemaker_chat/huggingface-pytorch-tgi-inference-2024-08-23-15-48-59-245",
|
||
"sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
|
||
],
|
||
)
|
||
async def test_completion_sagemaker_streaming_bad_request(sync_mode, model):
|
||
litellm.set_verbose = True
|
||
print("testing sagemaker")
|
||
if sync_mode is True:
|
||
with pytest.raises(litellm.BadRequestError):
|
||
response = litellm.completion(
|
||
model=model,
|
||
messages=[
|
||
{"role": "user", "content": "hi"},
|
||
],
|
||
stream=True,
|
||
max_tokens=8000000000000000,
|
||
)
|
||
else:
|
||
with pytest.raises(litellm.BadRequestError):
|
||
response = await litellm.acompletion(
|
||
model=model,
|
||
messages=[
|
||
{"role": "user", "content": "hi"},
|
||
],
|
||
stream=True,
|
||
max_tokens=8000000000000000,
|
||
)
|
||
|
||
|
||
@pytest.mark.asyncio
|
||
async def test_acompletion_sagemaker_non_stream():
|
||
mock_response = AsyncMock()
|
||
|
||
def return_val():
|
||
return {
|
||
"generated_text": "This is a mock response from SageMaker.",
|
||
"id": "cmpl-mockid",
|
||
"object": "text_completion",
|
||
"created": 1629800000,
|
||
"model": "sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
|
||
"choices": [
|
||
{
|
||
"text": "This is a mock response from SageMaker.",
|
||
"index": 0,
|
||
"logprobs": None,
|
||
"finish_reason": "length",
|
||
}
|
||
],
|
||
"usage": {"prompt_tokens": 1, "completion_tokens": 8, "total_tokens": 9},
|
||
}
|
||
|
||
mock_response.json = return_val
|
||
mock_response.status_code = 200
|
||
|
||
expected_payload = {
|
||
"inputs": "hi",
|
||
"parameters": {"temperature": 0.2, "max_new_tokens": 80},
|
||
}
|
||
|
||
with patch(
|
||
"litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post",
|
||
return_value=mock_response,
|
||
) as mock_post:
|
||
# Act: Call the litellm.acompletion function
|
||
response = await litellm.acompletion(
|
||
model="sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
|
||
messages=[
|
||
{"role": "user", "content": "hi"},
|
||
],
|
||
temperature=0.2,
|
||
max_tokens=80,
|
||
input_cost_per_second=0.000420,
|
||
)
|
||
|
||
# Print what was called on the mock
|
||
print("call args=", mock_post.call_args)
|
||
|
||
# Assert
|
||
mock_post.assert_called_once()
|
||
_, kwargs = mock_post.call_args
|
||
args_to_sagemaker = kwargs["json"]
|
||
print("Arguments passed to sagemaker=", args_to_sagemaker)
|
||
assert args_to_sagemaker == expected_payload
|
||
assert (
|
||
kwargs["url"]
|
||
== "https://runtime.sagemaker.us-west-2.amazonaws.com/endpoints/jumpstart-dft-hf-textgeneration1-mp-20240815-185614/invocations"
|
||
)
|
||
|
||
|
||
@pytest.mark.asyncio
|
||
async def test_completion_sagemaker_non_stream():
|
||
mock_response = MagicMock()
|
||
|
||
def return_val():
|
||
return {
|
||
"generated_text": "This is a mock response from SageMaker.",
|
||
"id": "cmpl-mockid",
|
||
"object": "text_completion",
|
||
"created": 1629800000,
|
||
"model": "sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
|
||
"choices": [
|
||
{
|
||
"text": "This is a mock response from SageMaker.",
|
||
"index": 0,
|
||
"logprobs": None,
|
||
"finish_reason": "length",
|
||
}
|
||
],
|
||
"usage": {"prompt_tokens": 1, "completion_tokens": 8, "total_tokens": 9},
|
||
}
|
||
|
||
mock_response.json = return_val
|
||
mock_response.status_code = 200
|
||
|
||
expected_payload = {
|
||
"inputs": "hi",
|
||
"parameters": {"temperature": 0.2, "max_new_tokens": 80},
|
||
}
|
||
|
||
with patch(
|
||
"litellm.llms.custom_httpx.http_handler.HTTPHandler.post",
|
||
return_value=mock_response,
|
||
) as mock_post:
|
||
# Act: Call the litellm.acompletion function
|
||
response = litellm.completion(
|
||
model="sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
|
||
messages=[
|
||
{"role": "user", "content": "hi"},
|
||
],
|
||
temperature=0.2,
|
||
max_tokens=80,
|
||
input_cost_per_second=0.000420,
|
||
)
|
||
|
||
# Print what was called on the mock
|
||
print("call args=", mock_post.call_args)
|
||
|
||
# Assert
|
||
mock_post.assert_called_once()
|
||
_, kwargs = mock_post.call_args
|
||
args_to_sagemaker = kwargs["json"]
|
||
print("Arguments passed to sagemaker=", args_to_sagemaker)
|
||
assert args_to_sagemaker == expected_payload
|
||
assert (
|
||
kwargs["url"]
|
||
== "https://runtime.sagemaker.us-west-2.amazonaws.com/endpoints/jumpstart-dft-hf-textgeneration1-mp-20240815-185614/invocations"
|
||
)
|
||
|
||
|
||
@pytest.mark.asyncio
|
||
@pytest.mark.flaky(retries=3, delay=1)
|
||
async def test_completion_sagemaker_prompt_template_non_stream():
|
||
mock_response = MagicMock()
|
||
|
||
def return_val():
|
||
return {
|
||
"generated_text": "This is a mock response from SageMaker.",
|
||
"id": "cmpl-mockid",
|
||
"object": "text_completion",
|
||
"created": 1629800000,
|
||
"model": "sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
|
||
"choices": [
|
||
{
|
||
"text": "This is a mock response from SageMaker.",
|
||
"index": 0,
|
||
"logprobs": None,
|
||
"finish_reason": "length",
|
||
}
|
||
],
|
||
"usage": {"prompt_tokens": 1, "completion_tokens": 8, "total_tokens": 9},
|
||
}
|
||
|
||
mock_response.json = return_val
|
||
mock_response.status_code = 200
|
||
|
||
expected_payload = {
|
||
"inputs": "<|begin▁of▁sentence|>You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer\n\n### Instruction:\nhi\n\n\n### Response:\n",
|
||
"parameters": {"temperature": 0.2, "max_new_tokens": 80},
|
||
}
|
||
|
||
with patch(
|
||
"litellm.llms.custom_httpx.http_handler.HTTPHandler.post",
|
||
return_value=mock_response,
|
||
) as mock_post:
|
||
# Act: Call the litellm.acompletion function
|
||
response = litellm.completion(
|
||
model="sagemaker/deepseek_coder_6.7_instruct",
|
||
messages=[
|
||
{"role": "user", "content": "hi"},
|
||
],
|
||
temperature=0.2,
|
||
max_tokens=80,
|
||
hf_model_name="deepseek-ai/deepseek-coder-6.7b-instruct",
|
||
)
|
||
|
||
# Print what was called on the mock
|
||
print("call args=", mock_post.call_args)
|
||
|
||
# Assert
|
||
mock_post.assert_called_once()
|
||
_, kwargs = mock_post.call_args
|
||
args_to_sagemaker = kwargs["json"]
|
||
print("Arguments passed to sagemaker=", args_to_sagemaker)
|
||
assert args_to_sagemaker == expected_payload
|
||
|
||
|
||
@pytest.mark.asyncio
|
||
async def test_completion_sagemaker_non_stream_with_aws_params():
|
||
mock_response = MagicMock()
|
||
|
||
def return_val():
|
||
return {
|
||
"generated_text": "This is a mock response from SageMaker.",
|
||
"id": "cmpl-mockid",
|
||
"object": "text_completion",
|
||
"created": 1629800000,
|
||
"model": "sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
|
||
"choices": [
|
||
{
|
||
"text": "This is a mock response from SageMaker.",
|
||
"index": 0,
|
||
"logprobs": None,
|
||
"finish_reason": "length",
|
||
}
|
||
],
|
||
"usage": {"prompt_tokens": 1, "completion_tokens": 8, "total_tokens": 9},
|
||
}
|
||
|
||
mock_response.json = return_val
|
||
mock_response.status_code = 200
|
||
|
||
expected_payload = {
|
||
"inputs": "hi",
|
||
"parameters": {"temperature": 0.2, "max_new_tokens": 80},
|
||
}
|
||
|
||
with patch(
|
||
"litellm.llms.custom_httpx.http_handler.HTTPHandler.post",
|
||
return_value=mock_response,
|
||
) as mock_post:
|
||
# Act: Call the litellm.acompletion function
|
||
response = litellm.completion(
|
||
model="sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
|
||
messages=[
|
||
{"role": "user", "content": "hi"},
|
||
],
|
||
temperature=0.2,
|
||
max_tokens=80,
|
||
input_cost_per_second=0.000420,
|
||
aws_access_key_id="gm",
|
||
aws_secret_access_key="s",
|
||
aws_region_name="us-west-5",
|
||
)
|
||
|
||
# Print what was called on the mock
|
||
print("call args=", mock_post.call_args)
|
||
|
||
# Assert
|
||
mock_post.assert_called_once()
|
||
_, kwargs = mock_post.call_args
|
||
args_to_sagemaker = kwargs["json"]
|
||
print("Arguments passed to sagemaker=", args_to_sagemaker)
|
||
assert args_to_sagemaker == expected_payload
|
||
assert (
|
||
kwargs["url"]
|
||
== "https://runtime.sagemaker.us-west-5.amazonaws.com/endpoints/jumpstart-dft-hf-textgeneration1-mp-20240815-185614/invocations"
|
||
)
|