litellm-mirror/litellm/files/main.py
2024-07-10 14:51:48 -07:00

150 lines
4.9 KiB
Python

"""
Main File for Files API implementation
https://platform.openai.com/docs/api-reference/files
"""
import asyncio
import contextvars
import os
from functools import partial
from typing import Any, Coroutine, Dict, Literal, Optional, Union
import httpx
from openai.types.file_object import FileObject
import litellm
from litellm import client
from litellm.batches.main import openai_files_instance
from litellm.types.llms.openai import (
Batch,
CreateFileRequest,
FileContentRequest,
FileTypes,
HttpxBinaryResponseContent,
)
from litellm.types.router import *
from litellm.utils import supports_httpx_timeout
async def afile_retrieve(
file_id: str,
custom_llm_provider: Literal["openai"] = "openai",
extra_headers: Optional[Dict[str, str]] = None,
extra_body: Optional[Dict[str, str]] = None,
**kwargs,
) -> Coroutine[Any, Any, FileObject]:
"""
Async: Get file contents
LiteLLM Equivalent of GET https://api.openai.com/v1/files
"""
try:
loop = asyncio.get_event_loop()
kwargs["is_async"] = True
# Use a partial function to pass your keyword arguments
func = partial(
file_retrieve,
file_id,
custom_llm_provider,
extra_headers,
extra_body,
**kwargs,
)
# Add the context to the function
ctx = contextvars.copy_context()
func_with_context = partial(ctx.run, func)
init_response = await loop.run_in_executor(None, func_with_context)
if asyncio.iscoroutine(init_response):
response = await init_response
else:
response = init_response # type: ignore
return response
except Exception as e:
raise e
def file_retrieve(
file_id: str,
custom_llm_provider: Literal["openai"] = "openai",
extra_headers: Optional[Dict[str, str]] = None,
extra_body: Optional[Dict[str, str]] = None,
**kwargs,
) -> FileObject:
"""
Returns the contents of the specified file.
LiteLLM Equivalent of POST: POST https://api.openai.com/v1/files
"""
try:
optional_params = GenericLiteLLMParams(**kwargs)
if custom_llm_provider == "openai":
# for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
api_base = (
optional_params.api_base
or litellm.api_base
or os.getenv("OPENAI_API_BASE")
or "https://api.openai.com/v1"
)
organization = (
optional_params.organization
or litellm.organization
or os.getenv("OPENAI_ORGANIZATION", None)
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
)
# set API KEY
api_key = (
optional_params.api_key
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
or litellm.openai_key
or os.getenv("OPENAI_API_KEY")
)
### TIMEOUT LOGIC ###
timeout = (
optional_params.timeout or kwargs.get("request_timeout", 600) or 600
)
# set timeout for 10 minutes by default
if (
timeout is not None
and isinstance(timeout, httpx.Timeout)
and supports_httpx_timeout(custom_llm_provider) == False
):
read_timeout = timeout.read or 600
timeout = read_timeout # default 10 min timeout
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
timeout = float(timeout) # type: ignore
elif timeout is None:
timeout = 600.0
_is_async = kwargs.pop("is_async", False) is True
response = openai_files_instance.retrieve_file(
file_id=file_id,
_is_async=_is_async,
api_base=api_base,
api_key=api_key,
timeout=timeout,
max_retries=optional_params.max_retries,
organization=organization,
)
else:
raise litellm.exceptions.BadRequestError(
message="LiteLLM doesn't support {} for 'create_batch'. Only 'openai' is supported.".format(
custom_llm_provider
),
model="n/a",
llm_provider=custom_llm_provider,
response=httpx.Response(
status_code=400,
content="Unsupported provider",
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
),
)
return response
except Exception as e:
raise e