litellm-mirror/litellm/llms/azure/files/handler.py
Krish Dholakia 9b7ebb6a7d
build(pyproject.toml): add new dev dependencies - for type checking (#9631)
* build(pyproject.toml): add new dev dependencies - for type checking

* build: reformat files to fit black

* ci: reformat to fit black

* ci(test-litellm.yml): make tests run clear

* build(pyproject.toml): add ruff

* fix: fix ruff checks

* build(mypy/): fix mypy linting errors

* fix(hashicorp_secret_manager.py): fix passing cert for tls auth

* build(mypy/): resolve all mypy errors

* test: update test

* fix: fix black formatting

* build(pre-commit-config.yaml): use poetry run black

* fix(proxy_server.py): fix linting error

* fix: fix ruff safe representation error
2025-03-29 11:02:13 -07:00

283 lines
9.9 KiB
Python

from typing import Any, Coroutine, Optional, Union, cast
import httpx
from openai import AsyncAzureOpenAI, AzureOpenAI
from openai.types.file_deleted import FileDeleted
from litellm._logging import verbose_logger
from litellm.types.llms.openai import *
from ..common_utils import BaseAzureLLM
class AzureOpenAIFilesAPI(BaseAzureLLM):
"""
AzureOpenAI methods to support for batches
- create_file()
- retrieve_file()
- list_files()
- delete_file()
- file_content()
- update_file()
"""
def __init__(self) -> None:
super().__init__()
async def acreate_file(
self,
create_file_data: CreateFileRequest,
openai_client: AsyncAzureOpenAI,
) -> FileObject:
verbose_logger.debug("create_file_data=%s", create_file_data)
response = await openai_client.files.create(**create_file_data)
verbose_logger.debug("create_file_response=%s", response)
return response
def create_file(
self,
_is_async: bool,
create_file_data: CreateFileRequest,
api_base: Optional[str],
api_key: Optional[str],
api_version: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
litellm_params: Optional[dict] = None,
) -> Union[FileObject, Coroutine[Any, Any, FileObject]]:
openai_client: Optional[
Union[AzureOpenAI, AsyncAzureOpenAI]
] = self.get_azure_openai_client(
litellm_params=litellm_params or {},
api_key=api_key,
api_base=api_base,
api_version=api_version,
client=client,
_is_async=_is_async,
)
if openai_client is None:
raise ValueError(
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
)
if _is_async is True:
if not isinstance(openai_client, AsyncAzureOpenAI):
raise ValueError(
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
)
return self.acreate_file( # type: ignore
create_file_data=create_file_data, openai_client=openai_client
)
response = openai_client.files.create(**create_file_data)
return response
async def afile_content(
self,
file_content_request: FileContentRequest,
openai_client: AsyncAzureOpenAI,
) -> HttpxBinaryResponseContent:
response = await openai_client.files.content(**file_content_request)
return HttpxBinaryResponseContent(response=response.response)
def file_content(
self,
_is_async: bool,
file_content_request: FileContentRequest,
api_base: Optional[str],
api_key: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
api_version: Optional[str] = None,
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
litellm_params: Optional[dict] = None,
) -> Union[
HttpxBinaryResponseContent, Coroutine[Any, Any, HttpxBinaryResponseContent]
]:
openai_client: Optional[
Union[AzureOpenAI, AsyncAzureOpenAI]
] = self.get_azure_openai_client(
litellm_params=litellm_params or {},
api_key=api_key,
api_base=api_base,
api_version=api_version,
client=client,
_is_async=_is_async,
)
if openai_client is None:
raise ValueError(
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
)
if _is_async is True:
if not isinstance(openai_client, AsyncAzureOpenAI):
raise ValueError(
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
)
return self.afile_content( # type: ignore
file_content_request=file_content_request,
openai_client=openai_client,
)
response = cast(AzureOpenAI, openai_client).files.content(
**file_content_request
)
return HttpxBinaryResponseContent(response=response.response)
async def aretrieve_file(
self,
file_id: str,
openai_client: AsyncAzureOpenAI,
) -> FileObject:
response = await openai_client.files.retrieve(file_id=file_id)
return response
def retrieve_file(
self,
_is_async: bool,
file_id: str,
api_base: Optional[str],
api_key: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
api_version: Optional[str] = None,
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
litellm_params: Optional[dict] = None,
):
openai_client: Optional[
Union[AzureOpenAI, AsyncAzureOpenAI]
] = self.get_azure_openai_client(
litellm_params=litellm_params or {},
api_key=api_key,
api_base=api_base,
api_version=api_version,
client=client,
_is_async=_is_async,
)
if openai_client is None:
raise ValueError(
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
)
if _is_async is True:
if not isinstance(openai_client, AsyncAzureOpenAI):
raise ValueError(
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
)
return self.aretrieve_file( # type: ignore
file_id=file_id,
openai_client=openai_client,
)
response = openai_client.files.retrieve(file_id=file_id)
return response
async def adelete_file(
self,
file_id: str,
openai_client: AsyncAzureOpenAI,
) -> FileDeleted:
response = await openai_client.files.delete(file_id=file_id)
if not isinstance(response, FileDeleted): # azure returns an empty string
return FileDeleted(id=file_id, deleted=True, object="file")
return response
def delete_file(
self,
_is_async: bool,
file_id: str,
api_base: Optional[str],
api_key: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
organization: Optional[str] = None,
api_version: Optional[str] = None,
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
litellm_params: Optional[dict] = None,
):
openai_client: Optional[
Union[AzureOpenAI, AsyncAzureOpenAI]
] = self.get_azure_openai_client(
litellm_params=litellm_params or {},
api_key=api_key,
api_base=api_base,
api_version=api_version,
client=client,
_is_async=_is_async,
)
if openai_client is None:
raise ValueError(
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
)
if _is_async is True:
if not isinstance(openai_client, AsyncAzureOpenAI):
raise ValueError(
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
)
return self.adelete_file( # type: ignore
file_id=file_id,
openai_client=openai_client,
)
response = openai_client.files.delete(file_id=file_id)
if not isinstance(response, FileDeleted): # azure returns an empty string
return FileDeleted(id=file_id, deleted=True, object="file")
return response
async def alist_files(
self,
openai_client: AsyncAzureOpenAI,
purpose: Optional[str] = None,
):
if isinstance(purpose, str):
response = await openai_client.files.list(purpose=purpose)
else:
response = await openai_client.files.list()
return response
def list_files(
self,
_is_async: bool,
api_base: Optional[str],
api_key: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
purpose: Optional[str] = None,
api_version: Optional[str] = None,
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
litellm_params: Optional[dict] = None,
):
openai_client: Optional[
Union[AzureOpenAI, AsyncAzureOpenAI]
] = self.get_azure_openai_client(
litellm_params=litellm_params or {},
api_key=api_key,
api_base=api_base,
api_version=api_version,
client=client,
_is_async=_is_async,
)
if openai_client is None:
raise ValueError(
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
)
if _is_async is True:
if not isinstance(openai_client, AsyncAzureOpenAI):
raise ValueError(
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
)
return self.alist_files( # type: ignore
purpose=purpose,
openai_client=openai_client,
)
if isinstance(purpose, str):
response = openai_client.files.list(purpose=purpose)
else:
response = openai_client.files.list()
return response