mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
* build(pyproject.toml): add new dev dependencies - for type checking * build: reformat files to fit black * ci: reformat to fit black * ci(test-litellm.yml): make tests run clear * build(pyproject.toml): add ruff * fix: fix ruff checks * build(mypy/): fix mypy linting errors * fix(hashicorp_secret_manager.py): fix passing cert for tls auth * build(mypy/): resolve all mypy errors * test: update test * fix: fix black formatting * build(pre-commit-config.yaml): use poetry run black * fix(proxy_server.py): fix linting error * fix: fix ruff safe representation error
290 lines
9.8 KiB
Python
290 lines
9.8 KiB
Python
from typing import List, Optional, Union
|
|
|
|
from openai import OpenAI
|
|
|
|
import litellm
|
|
from litellm.llms.custom_httpx.http_handler import (
|
|
AsyncHTTPHandler,
|
|
HTTPHandler,
|
|
get_async_httpx_client,
|
|
)
|
|
from litellm.llms.openai.openai import OpenAIChatCompletion
|
|
from litellm.types.llms.azure_ai import ImageEmbeddingRequest
|
|
from litellm.types.utils import EmbeddingResponse
|
|
from litellm.utils import convert_to_model_response_object
|
|
|
|
from .cohere_transformation import AzureAICohereConfig
|
|
|
|
|
|
class AzureAIEmbedding(OpenAIChatCompletion):
|
|
def _process_response(
|
|
self,
|
|
image_embedding_responses: Optional[List],
|
|
text_embedding_responses: Optional[List],
|
|
image_embeddings_idx: List[int],
|
|
model_response: EmbeddingResponse,
|
|
input: List,
|
|
):
|
|
combined_responses = []
|
|
if (
|
|
image_embedding_responses is not None
|
|
and text_embedding_responses is not None
|
|
):
|
|
# Combine and order the results
|
|
text_idx = 0
|
|
image_idx = 0
|
|
|
|
for idx in range(len(input)):
|
|
if idx in image_embeddings_idx:
|
|
combined_responses.append(image_embedding_responses[image_idx])
|
|
image_idx += 1
|
|
else:
|
|
combined_responses.append(text_embedding_responses[text_idx])
|
|
text_idx += 1
|
|
|
|
model_response.data = combined_responses
|
|
elif image_embedding_responses is not None:
|
|
model_response.data = image_embedding_responses
|
|
elif text_embedding_responses is not None:
|
|
model_response.data = text_embedding_responses
|
|
|
|
response = AzureAICohereConfig()._transform_response(response=model_response) # type: ignore
|
|
|
|
return response
|
|
|
|
async def async_image_embedding(
|
|
self,
|
|
model: str,
|
|
data: ImageEmbeddingRequest,
|
|
timeout: float,
|
|
logging_obj,
|
|
model_response: litellm.EmbeddingResponse,
|
|
optional_params: dict,
|
|
api_key: Optional[str],
|
|
api_base: Optional[str],
|
|
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
|
|
) -> EmbeddingResponse:
|
|
if client is None or not isinstance(client, AsyncHTTPHandler):
|
|
client = get_async_httpx_client(
|
|
llm_provider=litellm.LlmProviders.AZURE_AI,
|
|
params={"timeout": timeout},
|
|
)
|
|
|
|
url = "{}/images/embeddings".format(api_base)
|
|
|
|
response = await client.post(
|
|
url=url,
|
|
json=data, # type: ignore
|
|
headers={"Authorization": "Bearer {}".format(api_key)},
|
|
)
|
|
|
|
embedding_response = response.json()
|
|
embedding_headers = dict(response.headers)
|
|
returned_response: EmbeddingResponse = convert_to_model_response_object( # type: ignore
|
|
response_object=embedding_response,
|
|
model_response_object=model_response,
|
|
response_type="embedding",
|
|
stream=False,
|
|
_response_headers=embedding_headers,
|
|
)
|
|
return returned_response
|
|
|
|
def image_embedding(
|
|
self,
|
|
model: str,
|
|
data: ImageEmbeddingRequest,
|
|
timeout: float,
|
|
logging_obj,
|
|
model_response: EmbeddingResponse,
|
|
optional_params: dict,
|
|
api_key: Optional[str],
|
|
api_base: Optional[str],
|
|
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
|
|
):
|
|
if api_base is None:
|
|
raise ValueError(
|
|
"api_base is None. Please set AZURE_AI_API_BASE or dynamically via `api_base` param, to make the request."
|
|
)
|
|
if api_key is None:
|
|
raise ValueError(
|
|
"api_key is None. Please set AZURE_AI_API_KEY or dynamically via `api_key` param, to make the request."
|
|
)
|
|
|
|
if client is None or not isinstance(client, HTTPHandler):
|
|
client = HTTPHandler(timeout=timeout, concurrent_limit=1)
|
|
|
|
url = "{}/images/embeddings".format(api_base)
|
|
|
|
response = client.post(
|
|
url=url,
|
|
json=data, # type: ignore
|
|
headers={"Authorization": "Bearer {}".format(api_key)},
|
|
)
|
|
|
|
embedding_response = response.json()
|
|
embedding_headers = dict(response.headers)
|
|
returned_response: EmbeddingResponse = convert_to_model_response_object( # type: ignore
|
|
response_object=embedding_response,
|
|
model_response_object=model_response,
|
|
response_type="embedding",
|
|
stream=False,
|
|
_response_headers=embedding_headers,
|
|
)
|
|
return returned_response
|
|
|
|
async def async_embedding(
|
|
self,
|
|
model: str,
|
|
input: List,
|
|
timeout: float,
|
|
logging_obj,
|
|
model_response: litellm.EmbeddingResponse,
|
|
optional_params: dict,
|
|
api_key: Optional[str] = None,
|
|
api_base: Optional[str] = None,
|
|
client=None,
|
|
) -> EmbeddingResponse:
|
|
(
|
|
image_embeddings_request,
|
|
v1_embeddings_request,
|
|
image_embeddings_idx,
|
|
) = AzureAICohereConfig()._transform_request(
|
|
input=input, optional_params=optional_params, model=model
|
|
)
|
|
|
|
image_embedding_responses: Optional[List] = None
|
|
text_embedding_responses: Optional[List] = None
|
|
|
|
if image_embeddings_request["input"]:
|
|
image_response = await self.async_image_embedding(
|
|
model=model,
|
|
data=image_embeddings_request,
|
|
timeout=timeout,
|
|
logging_obj=logging_obj,
|
|
model_response=model_response,
|
|
optional_params=optional_params,
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
client=client,
|
|
)
|
|
|
|
image_embedding_responses = image_response.data
|
|
if image_embedding_responses is None:
|
|
raise Exception("/image/embeddings route returned None Embeddings.")
|
|
|
|
if v1_embeddings_request["input"]:
|
|
response: EmbeddingResponse = await super().embedding( # type: ignore
|
|
model=model,
|
|
input=input,
|
|
timeout=timeout,
|
|
logging_obj=logging_obj,
|
|
model_response=model_response,
|
|
optional_params=optional_params,
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
client=client,
|
|
aembedding=True,
|
|
)
|
|
text_embedding_responses = response.data
|
|
if text_embedding_responses is None:
|
|
raise Exception("/v1/embeddings route returned None Embeddings.")
|
|
|
|
return self._process_response(
|
|
image_embedding_responses=image_embedding_responses,
|
|
text_embedding_responses=text_embedding_responses,
|
|
image_embeddings_idx=image_embeddings_idx,
|
|
model_response=model_response,
|
|
input=input,
|
|
)
|
|
|
|
def embedding(
|
|
self,
|
|
model: str,
|
|
input: List,
|
|
timeout: float,
|
|
logging_obj,
|
|
model_response: EmbeddingResponse,
|
|
optional_params: dict,
|
|
api_key: Optional[str] = None,
|
|
api_base: Optional[str] = None,
|
|
client=None,
|
|
aembedding=None,
|
|
max_retries: Optional[int] = None,
|
|
) -> EmbeddingResponse:
|
|
"""
|
|
- Separate image url from text
|
|
-> route image url call to `/image/embeddings`
|
|
-> route text call to `/v1/embeddings` (OpenAI route)
|
|
|
|
assemble result in-order, and return
|
|
"""
|
|
if aembedding is True:
|
|
return self.async_embedding( # type: ignore
|
|
model,
|
|
input,
|
|
timeout,
|
|
logging_obj,
|
|
model_response,
|
|
optional_params,
|
|
api_key,
|
|
api_base,
|
|
client,
|
|
)
|
|
|
|
(
|
|
image_embeddings_request,
|
|
v1_embeddings_request,
|
|
image_embeddings_idx,
|
|
) = AzureAICohereConfig()._transform_request(
|
|
input=input, optional_params=optional_params, model=model
|
|
)
|
|
|
|
image_embedding_responses: Optional[List] = None
|
|
text_embedding_responses: Optional[List] = None
|
|
|
|
if image_embeddings_request["input"]:
|
|
image_response = self.image_embedding(
|
|
model=model,
|
|
data=image_embeddings_request,
|
|
timeout=timeout,
|
|
logging_obj=logging_obj,
|
|
model_response=model_response,
|
|
optional_params=optional_params,
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
client=client,
|
|
)
|
|
|
|
image_embedding_responses = image_response.data
|
|
if image_embedding_responses is None:
|
|
raise Exception("/image/embeddings route returned None Embeddings.")
|
|
|
|
if v1_embeddings_request["input"]:
|
|
response: EmbeddingResponse = super().embedding( # type: ignore
|
|
model,
|
|
input,
|
|
timeout,
|
|
logging_obj,
|
|
model_response,
|
|
optional_params,
|
|
api_key,
|
|
api_base,
|
|
client=(
|
|
client
|
|
if client is not None and isinstance(client, OpenAI)
|
|
else None
|
|
),
|
|
aembedding=aembedding,
|
|
)
|
|
|
|
text_embedding_responses = response.data
|
|
if text_embedding_responses is None:
|
|
raise Exception("/v1/embeddings route returned None Embeddings.")
|
|
|
|
return self._process_response(
|
|
image_embedding_responses=image_embedding_responses,
|
|
text_embedding_responses=text_embedding_responses,
|
|
image_embeddings_idx=image_embeddings_idx,
|
|
model_response=model_response,
|
|
input=input,
|
|
)
|