mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
* build(pyproject.toml): add new dev dependencies - for type checking * build: reformat files to fit black * ci: reformat to fit black * ci(test-litellm.yml): make tests run clear * build(pyproject.toml): add ruff * fix: fix ruff checks * build(mypy/): fix mypy linting errors * fix(hashicorp_secret_manager.py): fix passing cert for tls auth * build(mypy/): resolve all mypy errors * test: update test * fix: fix black formatting * build(pre-commit-config.yaml): use poetry run black * fix(proxy_server.py): fix linting error * fix: fix ruff safe representation error
177 lines
5 KiB
Python
177 lines
5 KiB
Python
import json
|
|
from typing import Any, Callable, Optional, Union
|
|
|
|
import httpx
|
|
|
|
import litellm
|
|
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
|
from litellm.llms.custom_httpx.http_handler import (
|
|
AsyncHTTPHandler,
|
|
HTTPHandler,
|
|
get_async_httpx_client,
|
|
)
|
|
from litellm.types.llms.bedrock import CohereEmbeddingRequest
|
|
from litellm.types.utils import EmbeddingResponse
|
|
|
|
from .transformation import CohereEmbeddingConfig
|
|
|
|
|
|
def validate_environment(api_key, headers: dict):
|
|
headers.update(
|
|
{
|
|
"Request-Source": "unspecified:litellm",
|
|
"accept": "application/json",
|
|
"content-type": "application/json",
|
|
}
|
|
)
|
|
if api_key:
|
|
headers["Authorization"] = f"Bearer {api_key}"
|
|
return headers
|
|
|
|
|
|
class CohereError(Exception):
|
|
def __init__(self, status_code, message):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
self.request = httpx.Request(
|
|
method="POST", url="https://api.cohere.ai/v1/generate"
|
|
)
|
|
self.response = httpx.Response(status_code=status_code, request=self.request)
|
|
super().__init__(
|
|
self.message
|
|
) # Call the base class constructor with the parameters it needs
|
|
|
|
|
|
async def async_embedding(
|
|
model: str,
|
|
data: Union[dict, CohereEmbeddingRequest],
|
|
input: list,
|
|
model_response: litellm.utils.EmbeddingResponse,
|
|
timeout: Optional[Union[float, httpx.Timeout]],
|
|
logging_obj: LiteLLMLoggingObj,
|
|
optional_params: dict,
|
|
api_base: str,
|
|
api_key: Optional[str],
|
|
headers: dict,
|
|
encoding: Callable,
|
|
client: Optional[AsyncHTTPHandler] = None,
|
|
):
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
additional_args={
|
|
"complete_input_dict": data,
|
|
"headers": headers,
|
|
"api_base": api_base,
|
|
},
|
|
)
|
|
## COMPLETION CALL
|
|
|
|
if client is None:
|
|
client = get_async_httpx_client(
|
|
llm_provider=litellm.LlmProviders.COHERE,
|
|
params={"timeout": timeout},
|
|
)
|
|
|
|
try:
|
|
response = await client.post(api_base, headers=headers, data=json.dumps(data))
|
|
except httpx.HTTPStatusError as e:
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": data},
|
|
original_response=e.response.text,
|
|
)
|
|
raise e
|
|
except Exception as e:
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": data},
|
|
original_response=str(e),
|
|
)
|
|
raise e
|
|
|
|
## PROCESS RESPONSE ##
|
|
return CohereEmbeddingConfig()._transform_response(
|
|
response=response,
|
|
api_key=api_key,
|
|
logging_obj=logging_obj,
|
|
data=data,
|
|
model_response=model_response,
|
|
model=model,
|
|
encoding=encoding,
|
|
input=input,
|
|
)
|
|
|
|
|
|
def embedding(
|
|
model: str,
|
|
input: list,
|
|
model_response: EmbeddingResponse,
|
|
logging_obj: LiteLLMLoggingObj,
|
|
optional_params: dict,
|
|
headers: dict,
|
|
encoding: Any,
|
|
data: Optional[Union[dict, CohereEmbeddingRequest]] = None,
|
|
complete_api_base: Optional[str] = None,
|
|
api_key: Optional[str] = None,
|
|
aembedding: Optional[bool] = None,
|
|
timeout: Optional[Union[float, httpx.Timeout]] = httpx.Timeout(None),
|
|
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
|
|
):
|
|
headers = validate_environment(api_key, headers=headers)
|
|
embed_url = complete_api_base or "https://api.cohere.ai/v1/embed"
|
|
model = model
|
|
|
|
data = data or CohereEmbeddingConfig()._transform_request(
|
|
model=model, input=input, inference_params=optional_params
|
|
)
|
|
|
|
## ROUTING
|
|
if aembedding is True:
|
|
return async_embedding(
|
|
model=model,
|
|
data=data,
|
|
input=input,
|
|
model_response=model_response,
|
|
timeout=timeout,
|
|
logging_obj=logging_obj,
|
|
optional_params=optional_params,
|
|
api_base=embed_url,
|
|
api_key=api_key,
|
|
headers=headers,
|
|
encoding=encoding,
|
|
client=(
|
|
client
|
|
if client is not None and isinstance(client, AsyncHTTPHandler)
|
|
else None
|
|
),
|
|
)
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
|
|
## COMPLETION CALL
|
|
if client is None or not isinstance(client, HTTPHandler):
|
|
client = HTTPHandler(concurrent_limit=1)
|
|
|
|
response = client.post(embed_url, headers=headers, data=json.dumps(data))
|
|
|
|
return CohereEmbeddingConfig()._transform_response(
|
|
response=response,
|
|
api_key=api_key,
|
|
logging_obj=logging_obj,
|
|
data=data,
|
|
model_response=model_response,
|
|
model=model,
|
|
encoding=encoding,
|
|
input=input,
|
|
)
|