litellm-mirror/litellm/proxy/fine_tuning_endpoints/endpoints.py
2024-07-31 12:44:01 -07:00

160 lines
4.9 KiB
Python

#########################################################################
# /v1/fine_tuning Endpoints
# Equivalent of https://platform.openai.com/docs/api-reference/fine-tuning
##########################################################################
import asyncio
import traceback
from datetime import datetime, timedelta, timezone
from typing import List, Optional
import fastapi
import httpx
from fastapi import (
APIRouter,
Depends,
File,
Form,
Header,
HTTPException,
Request,
Response,
UploadFile,
status,
)
import litellm
from litellm._logging import verbose_proxy_logger
from litellm.batches.main import FileObject
from litellm.proxy._types import *
from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
router = APIRouter()
from litellm.llms.fine_tuning_apis.openai import (
FineTuningJob,
FineTuningJobCreate,
OpenAIFineTuningAPI,
)
@router.post(
"/v1/fine_tuning/jobs",
dependencies=[Depends(user_api_key_auth)],
tags=["fine-tuning"],
)
@router.post(
"/fine_tuning/jobs",
dependencies=[Depends(user_api_key_auth)],
tags=["fine-tuning"],
)
async def create_fine_tuning_job(
request: Request,
fastapi_response: Response,
fine_tuning_request: FineTuningJobCreate,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
"""
Creates a fine-tuning job which begins the process of creating a new model from a given dataset.
This is the equivalent of POST https://api.openai.com/v1/fine_tuning/jobs
Supports Identical Params as: https://platform.openai.com/docs/api-reference/fine-tuning/create
Example Curl:
```
curl http://localhost:4000/v1/fine_tuning/jobs \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "gpt-3.5-turbo",
"training_file": "file-abc123",
"hyperparameters": {
"n_epochs": 4
}
}'
```
"""
from litellm.proxy.proxy_server import (
add_litellm_data_to_request,
general_settings,
get_custom_headers,
proxy_config,
proxy_logging_obj,
version,
)
try:
# Convert Pydantic model to dict
data = fine_tuning_request.model_dump(exclude_none=True)
verbose_proxy_logger.debug(
"Request received by LiteLLM:\n{}".format(json.dumps(data, indent=4)),
)
# Include original request and headers in the data
data = await add_litellm_data_to_request(
data=data,
request=request,
general_settings=general_settings,
user_api_key_dict=user_api_key_dict,
version=version,
proxy_config=proxy_config,
)
# For now, use custom_llm_provider=="openai" -> this will change as LiteLLM adds more providers for fine-tuning
response = await litellm.acreate_fine_tuning_job(
custom_llm_provider="openai", **data
)
### ALERTING ###
asyncio.create_task(
proxy_logging_obj.update_request_status(
litellm_call_id=data.get("litellm_call_id", ""), status="success"
)
)
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
model_id = hidden_params.get("model_id", None) or ""
cache_key = hidden_params.get("cache_key", None) or ""
api_base = hidden_params.get("api_base", None) or ""
fastapi_response.headers.update(
get_custom_headers(
user_api_key_dict=user_api_key_dict,
model_id=model_id,
cache_key=cache_key,
api_base=api_base,
version=version,
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
)
)
return response
except Exception as e:
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
)
verbose_proxy_logger.error(
"litellm.proxy.proxy_server.create_fine_tuning_job(): Exception occurred - {}".format(
str(e)
)
)
verbose_proxy_logger.debug(traceback.format_exc())
if isinstance(e, HTTPException):
raise ProxyException(
message=getattr(e, "message", str(e.detail)),
type=getattr(e, "type", "None"),
param=getattr(e, "param", "None"),
code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
)
else:
error_msg = f"{str(e)}"
raise ProxyException(
message=getattr(e, "message", error_msg),
type=getattr(e, "type", "None"),
param=getattr(e, "param", "None"),
code=getattr(e, "status_code", 500),
)