litellm-mirror/tests/proxy_unit_tests/test_proxy_utils.py

1934 lines
59 KiB
Python

import asyncio
import json
import os
import sys
import uuid
from datetime import datetime
from typing import Any, Dict
from unittest.mock import AsyncMock, MagicMock, Mock, patch
import aiohttp
import pytest
import pytest_asyncio
from fastapi import Request
import litellm
from litellm.caching.caching import DualCache
from litellm.proxy._types import LitellmUserRoles, UserAPIKeyAuth
from litellm.proxy.auth.auth_utils import is_request_body_safe
from litellm.proxy.litellm_pre_call_utils import (
_get_dynamic_logging_metadata,
add_litellm_data_to_request,
)
from litellm.proxy.utils import (
PrismaClient,
ProxyLogging,
_get_docs_url,
_get_redoc_url,
reset_budget,
)
from litellm.types.utils import SupportedCacheControls
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
@pytest.fixture
def mock_request(monkeypatch):
mock_request = Mock(spec=Request)
mock_request.query_params = {} # Set mock query_params to an empty dictionary
mock_request.headers = {"traceparent": "test_traceparent"}
monkeypatch.setattr(
"litellm.proxy.litellm_pre_call_utils.add_litellm_data_to_request", mock_request
)
return mock_request
@pytest.mark.parametrize("endpoint", ["/v1/threads", "/v1/thread/123"])
@pytest.mark.asyncio
async def test_add_litellm_data_to_request_thread_endpoint(endpoint, mock_request):
mock_request.url.path = endpoint
user_api_key_dict = UserAPIKeyAuth(
api_key="test_api_key", user_id="test_user_id", org_id="test_org_id"
)
proxy_config = Mock()
data = {}
await add_litellm_data_to_request(
data, mock_request, user_api_key_dict, proxy_config
)
print("DATA: ", data)
assert "litellm_metadata" in data
assert "metadata" not in data
@pytest.mark.parametrize(
"endpoint", ["/chat/completions", "/v1/completions", "/completions"]
)
@pytest.mark.asyncio
async def test_add_litellm_data_to_request_non_thread_endpoint(endpoint, mock_request):
mock_request.url.path = endpoint
user_api_key_dict = UserAPIKeyAuth(
api_key="test_api_key", user_id="test_user_id", org_id="test_org_id"
)
proxy_config = Mock()
data = {}
await add_litellm_data_to_request(
data, mock_request, user_api_key_dict, proxy_config
)
print("DATA: ", data)
assert "metadata" in data
assert "litellm_metadata" not in data
# test adding traceparent
@pytest.mark.parametrize(
"endpoint", ["/chat/completions", "/v1/completions", "/completions"]
)
@pytest.mark.asyncio
async def test_traceparent_not_added_by_default(endpoint, mock_request):
"""
This tests that traceparent is not forwarded in the extra_headers
We had an incident where bedrock calls were failing because traceparent was forwarded
"""
from litellm.integrations.opentelemetry import OpenTelemetry
otel_logger = OpenTelemetry()
setattr(litellm.proxy.proxy_server, "open_telemetry_logger", otel_logger)
mock_request.url.path = endpoint
user_api_key_dict = UserAPIKeyAuth(
api_key="test_api_key", user_id="test_user_id", org_id="test_org_id"
)
proxy_config = Mock()
data = {}
await add_litellm_data_to_request(
data, mock_request, user_api_key_dict, proxy_config
)
print("DATA: ", data)
_extra_headers = data.get("extra_headers") or {}
assert "traceparent" not in _extra_headers
setattr(litellm.proxy.proxy_server, "open_telemetry_logger", None)
@pytest.mark.parametrize(
"request_tags", [None, ["request_tag1", "request_tag2", "request_tag3"]]
)
@pytest.mark.parametrize(
"request_sl_metadata", [None, {"request_key": "request_value"}]
)
@pytest.mark.parametrize("key_tags", [None, ["key_tag1", "key_tag2", "key_tag3"]])
@pytest.mark.parametrize("key_sl_metadata", [None, {"key_key": "key_value"}])
@pytest.mark.parametrize("team_tags", [None, ["team_tag1", "team_tag2", "team_tag3"]])
@pytest.mark.parametrize("team_sl_metadata", [None, {"team_key": "team_value"}])
@pytest.mark.asyncio
async def test_add_key_or_team_level_spend_logs_metadata_to_request(
mock_request,
request_tags,
request_sl_metadata,
team_tags,
key_sl_metadata,
team_sl_metadata,
key_tags,
):
## COMPLETE LIST OF TAGS
all_tags = []
if request_tags is not None:
print("Request Tags - {}".format(request_tags))
all_tags.extend(request_tags)
if key_tags is not None:
print("Key Tags - {}".format(key_tags))
all_tags.extend(key_tags)
if team_tags is not None:
print("Team Tags - {}".format(team_tags))
all_tags.extend(team_tags)
## COMPLETE SPEND_LOGS METADATA
all_sl_metadata = {}
if request_sl_metadata is not None:
all_sl_metadata.update(request_sl_metadata)
if key_sl_metadata is not None:
all_sl_metadata.update(key_sl_metadata)
if team_sl_metadata is not None:
all_sl_metadata.update(team_sl_metadata)
print(f"team_sl_metadata: {team_sl_metadata}")
mock_request.url.path = "/chat/completions"
key_metadata = {
"tags": key_tags,
"spend_logs_metadata": key_sl_metadata,
}
team_metadata = {
"tags": team_tags,
"spend_logs_metadata": team_sl_metadata,
}
user_api_key_dict = UserAPIKeyAuth(
api_key="test_api_key",
user_id="test_user_id",
org_id="test_org_id",
metadata=key_metadata,
team_metadata=team_metadata,
)
proxy_config = Mock()
data = {"metadata": {}}
if request_tags is not None:
data["metadata"]["tags"] = request_tags
if request_sl_metadata is not None:
data["metadata"]["spend_logs_metadata"] = request_sl_metadata
print(data)
new_data = await add_litellm_data_to_request(
data, mock_request, user_api_key_dict, proxy_config
)
print("New Data: {}".format(new_data))
print("all_tags: {}".format(all_tags))
assert "metadata" in new_data
if len(all_tags) == 0:
assert "tags" not in new_data["metadata"], "Expected=No tags. Got={}".format(
new_data["metadata"]["tags"]
)
else:
assert new_data["metadata"]["tags"] == all_tags, "Expected={}. Got={}".format(
all_tags, new_data["metadata"].get("tags", None)
)
if len(all_sl_metadata.keys()) == 0:
assert (
"spend_logs_metadata" not in new_data["metadata"]
), "Expected=No spend logs metadata. Got={}".format(
new_data["metadata"]["spend_logs_metadata"]
)
else:
assert (
new_data["metadata"]["spend_logs_metadata"] == all_sl_metadata
), "Expected={}. Got={}".format(
all_sl_metadata, new_data["metadata"]["spend_logs_metadata"]
)
# assert (
# new_data["metadata"]["spend_logs_metadata"] == metadata["spend_logs_metadata"]
# )
@pytest.mark.parametrize(
"callback_vars",
[
{
"langfuse_host": "https://us.cloud.langfuse.com",
"langfuse_public_key": "pk-lf-9636b7a6-c066",
"langfuse_secret_key": "sk-lf-7cc8b620",
},
{
"langfuse_host": "os.environ/LANGFUSE_HOST_TEMP",
"langfuse_public_key": "os.environ/LANGFUSE_PUBLIC_KEY_TEMP",
"langfuse_secret_key": "os.environ/LANGFUSE_SECRET_KEY_TEMP",
},
],
)
def test_dynamic_logging_metadata_key_and_team_metadata(callback_vars):
os.environ["LANGFUSE_PUBLIC_KEY_TEMP"] = "pk-lf-9636b7a6-c066"
os.environ["LANGFUSE_SECRET_KEY_TEMP"] = "sk-lf-7cc8b620"
os.environ["LANGFUSE_HOST_TEMP"] = "https://us.cloud.langfuse.com"
from litellm.proxy.proxy_server import ProxyConfig
proxy_config = ProxyConfig()
user_api_key_dict = UserAPIKeyAuth(
token="6f8688eaff1d37555bb9e9a6390b6d7032b3ab2526ba0152da87128eab956432",
key_name="sk-...63Fg",
key_alias=None,
spend=0.000111,
max_budget=None,
expires=None,
models=[],
aliases={},
config={},
user_id=None,
team_id="ishaan-special-team_e02dd54f-f790-4755-9f93-73734f415898",
max_parallel_requests=None,
metadata={
"logging": [
{
"callback_name": "langfuse",
"callback_type": "success",
"callback_vars": callback_vars,
}
]
},
tpm_limit=None,
rpm_limit=None,
budget_duration=None,
budget_reset_at=None,
allowed_cache_controls=[],
permissions={},
model_spend={},
model_max_budget={},
soft_budget_cooldown=False,
litellm_budget_table=None,
org_id=None,
team_spend=0.000132,
team_alias=None,
team_tpm_limit=None,
team_rpm_limit=None,
team_max_budget=None,
team_models=[],
team_blocked=False,
soft_budget=None,
team_model_aliases=None,
team_member_spend=None,
team_member=None,
team_metadata={},
end_user_id=None,
end_user_tpm_limit=None,
end_user_rpm_limit=None,
end_user_max_budget=None,
last_refreshed_at=1726101560.967527,
api_key="7c305cc48fe72272700dc0d67dc691c2d1f2807490ef5eb2ee1d3a3ca86e12b1",
user_role=LitellmUserRoles.INTERNAL_USER,
allowed_model_region=None,
parent_otel_span=None,
rpm_limit_per_model=None,
tpm_limit_per_model=None,
)
callbacks = _get_dynamic_logging_metadata(
user_api_key_dict=user_api_key_dict, proxy_config=proxy_config
)
assert callbacks is not None
for var in callbacks.callback_vars.values():
assert "os.environ" not in var
@pytest.mark.parametrize(
"callback_vars",
[
{
"turn_off_message_logging": True,
},
{
"turn_off_message_logging": False,
},
],
)
def test_dynamic_turn_off_message_logging(callback_vars):
from litellm.proxy.proxy_server import ProxyConfig
proxy_config = ProxyConfig()
user_api_key_dict = UserAPIKeyAuth(
token="6f8688eaff1d37555bb9e9a6390b6d7032b3ab2526ba0152da87128eab956432",
key_name="sk-...63Fg",
key_alias=None,
spend=0.000111,
max_budget=None,
expires=None,
models=[],
aliases={},
config={},
user_id=None,
team_id="ishaan-special-team_e02dd54f-f790-4755-9f93-73734f415898",
max_parallel_requests=None,
metadata={
"logging": [
{
"callback_name": "datadog",
"callback_vars": callback_vars,
}
]
},
tpm_limit=None,
rpm_limit=None,
budget_duration=None,
budget_reset_at=None,
allowed_cache_controls=[],
permissions={},
model_spend={},
model_max_budget={},
soft_budget_cooldown=False,
litellm_budget_table=None,
org_id=None,
team_spend=0.000132,
team_alias=None,
team_tpm_limit=None,
team_rpm_limit=None,
team_max_budget=None,
team_models=[],
team_blocked=False,
soft_budget=None,
team_model_aliases=None,
team_member_spend=None,
team_member=None,
team_metadata={},
end_user_id=None,
end_user_tpm_limit=None,
end_user_rpm_limit=None,
end_user_max_budget=None,
last_refreshed_at=1726101560.967527,
api_key="7c305cc48fe72272700dc0d67dc691c2d1f2807490ef5eb2ee1d3a3ca86e12b1",
user_role=LitellmUserRoles.INTERNAL_USER,
allowed_model_region=None,
parent_otel_span=None,
rpm_limit_per_model=None,
tpm_limit_per_model=None,
)
callbacks = _get_dynamic_logging_metadata(
user_api_key_dict=user_api_key_dict, proxy_config=proxy_config
)
assert callbacks is not None
assert (
callbacks.callback_vars["turn_off_message_logging"]
== callback_vars["turn_off_message_logging"]
)
@pytest.mark.parametrize(
"allow_client_side_credentials, expect_error", [(True, False), (False, True)]
)
def test_is_request_body_safe_global_enabled(
allow_client_side_credentials, expect_error
):
from litellm import Router
error_raised = False
llm_router = Router(
model_list=[
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
},
}
]
)
try:
is_request_body_safe(
request_body={"api_base": "hello-world"},
general_settings={
"allow_client_side_credentials": allow_client_side_credentials
},
llm_router=llm_router,
model="gpt-3.5-turbo",
)
except Exception as e:
print(e)
error_raised = True
assert expect_error == error_raised
@pytest.mark.parametrize(
"allow_client_side_credentials, expect_error", [(True, False), (False, True)]
)
def test_is_request_body_safe_model_enabled(
allow_client_side_credentials, expect_error
):
from litellm import Router
error_raised = False
llm_router = Router(
model_list=[
{
"model_name": "fireworks_ai/*",
"litellm_params": {
"model": "fireworks_ai/*",
"api_key": os.getenv("FIREWORKS_API_KEY"),
"configurable_clientside_auth_params": (
["api_base"] if allow_client_side_credentials else []
),
},
}
]
)
try:
is_request_body_safe(
request_body={"api_base": "hello-world"},
general_settings={},
llm_router=llm_router,
model="fireworks_ai/my-new-model",
)
except Exception as e:
print(e)
error_raised = True
assert expect_error == error_raised
def test_reading_openai_org_id_from_headers():
from litellm.proxy.litellm_pre_call_utils import LiteLLMProxyRequestSetup
headers = {
"OpenAI-Organization": "test_org_id",
}
org_id = LiteLLMProxyRequestSetup.get_openai_org_id_from_headers(headers)
assert org_id == "test_org_id"
@pytest.mark.parametrize(
"headers, expected_data",
[
({"OpenAI-Organization": "test_org_id"}, {"organization": "test_org_id"}),
({"openai-organization": "test_org_id"}, {"organization": "test_org_id"}),
({}, {}),
(
{
"OpenAI-Organization": "test_org_id",
"Authorization": "Bearer test_token",
},
{
"organization": "test_org_id",
},
),
],
)
def test_add_litellm_data_for_backend_llm_call(headers, expected_data):
import json
from litellm.proxy._types import UserAPIKeyAuth
from litellm.proxy.litellm_pre_call_utils import LiteLLMProxyRequestSetup
user_api_key_dict = UserAPIKeyAuth(
api_key="test_api_key", user_id="test_user_id", org_id="test_org_id"
)
data = LiteLLMProxyRequestSetup.add_litellm_data_for_backend_llm_call(
headers=headers,
user_api_key_dict=user_api_key_dict,
general_settings=None,
)
assert json.dumps(data, sort_keys=True) == json.dumps(expected_data, sort_keys=True)
def test_foward_litellm_user_info_to_backend_llm_call():
import json
litellm.add_user_information_to_llm_headers = True
from litellm.proxy._types import UserAPIKeyAuth
from litellm.proxy.litellm_pre_call_utils import LiteLLMProxyRequestSetup
user_api_key_dict = UserAPIKeyAuth(
api_key="test_api_key", user_id="test_user_id", org_id="test_org_id"
)
data = LiteLLMProxyRequestSetup.add_headers_to_llm_call(
headers={},
user_api_key_dict=user_api_key_dict,
)
expected_data = {
"x-litellm-user_api_key_user_id": "test_user_id",
"x-litellm-user_api_key_org_id": "test_org_id",
"x-litellm-user_api_key_hash": "test_api_key",
}
assert json.dumps(data, sort_keys=True) == json.dumps(expected_data, sort_keys=True)
def test_update_internal_user_params():
from litellm.proxy._types import NewUserRequest
from litellm.proxy.management_endpoints.internal_user_endpoints import (
_update_internal_new_user_params,
)
litellm.default_internal_user_params = {
"max_budget": 100,
"budget_duration": "30d",
"models": ["gpt-3.5-turbo"],
}
data = NewUserRequest(user_role="internal_user", user_email="krrish3@berri.ai")
data_json = data.model_dump()
updated_data_json = _update_internal_new_user_params(data_json, data)
assert updated_data_json["models"] == litellm.default_internal_user_params["models"]
assert (
updated_data_json["max_budget"]
== litellm.default_internal_user_params["max_budget"]
)
assert (
updated_data_json["budget_duration"]
== litellm.default_internal_user_params["budget_duration"]
)
@pytest.mark.asyncio
async def test_proxy_config_update_from_db():
from pydantic import BaseModel
from litellm.proxy.proxy_server import ProxyConfig
proxy_config = ProxyConfig()
pc = AsyncMock()
test_config = {
"litellm_settings": {
"callbacks": ["prometheus", "otel"],
}
}
class ReturnValue(BaseModel):
param_name: str
param_value: dict
with patch.object(
pc,
"get_generic_data",
new=AsyncMock(
return_value=ReturnValue(
param_name="litellm_settings",
param_value={
"success_callback": "langfuse",
},
)
),
):
new_config = await proxy_config._update_config_from_db(
prisma_client=pc,
config=test_config,
store_model_in_db=True,
)
assert new_config == {
"litellm_settings": {
"callbacks": ["prometheus", "otel"],
"success_callback": "langfuse",
}
}
def test_prepare_key_update_data():
from litellm.proxy._types import UpdateKeyRequest
from litellm.proxy.management_endpoints.key_management_endpoints import (
prepare_key_update_data,
)
existing_key_row = MagicMock()
data = UpdateKeyRequest(key="test_key", models=["gpt-4"], duration="120s")
updated_data = prepare_key_update_data(data, existing_key_row)
assert "expires" in updated_data
data = UpdateKeyRequest(key="test_key", metadata={})
updated_data = prepare_key_update_data(data, existing_key_row)
assert updated_data["metadata"] == {}
data = UpdateKeyRequest(key="test_key", metadata=None)
updated_data = prepare_key_update_data(data, existing_key_row)
assert updated_data["metadata"] is None
@pytest.mark.parametrize(
"env_value, expected_url",
[
(None, "/redoc"), # default case
("/custom-redoc", "/custom-redoc"), # custom URL
("https://example.com/redoc", "https://example.com/redoc"), # full URL
],
)
def test_get_redoc_url(env_value, expected_url):
if env_value is not None:
os.environ["REDOC_URL"] = env_value
else:
os.environ.pop("REDOC_URL", None) # ensure env var is not set
result = _get_redoc_url()
assert result == expected_url
@pytest.mark.parametrize(
"env_vars, expected_url",
[
({}, "/"), # default case
({"DOCS_URL": "/custom-docs"}, "/custom-docs"), # custom URL
(
{"DOCS_URL": "https://example.com/docs"},
"https://example.com/docs",
), # full URL
({"NO_DOCS": "True"}, None), # docs disabled
],
)
def test_get_docs_url(env_vars, expected_url):
# Clear relevant environment variables
for key in ["DOCS_URL", "NO_DOCS"]:
os.environ.pop(key, None)
# Set test environment variables
for key, value in env_vars.items():
os.environ[key] = value
result = _get_docs_url()
assert result == expected_url
@pytest.mark.parametrize(
"request_tags, tags_to_add, expected_tags",
[
(None, None, []), # both None
(["tag1", "tag2"], None, ["tag1", "tag2"]), # tags_to_add is None
(None, ["tag3", "tag4"], ["tag3", "tag4"]), # request_tags is None
(
["tag1", "tag2"],
["tag3", "tag4"],
["tag1", "tag2", "tag3", "tag4"],
), # both have unique tags
(
["tag1", "tag2"],
["tag2", "tag3"],
["tag1", "tag2", "tag3"],
), # overlapping tags
([], [], []), # both empty lists
("not_a_list", ["tag1"], ["tag1"]), # request_tags invalid type
(["tag1"], "not_a_list", ["tag1"]), # tags_to_add invalid type
(
["tag1"],
["tag1", "tag2"],
["tag1", "tag2"],
), # duplicate tags in inputs
],
)
def test_merge_tags(request_tags, tags_to_add, expected_tags):
from litellm.proxy.litellm_pre_call_utils import LiteLLMProxyRequestSetup
result = LiteLLMProxyRequestSetup._merge_tags(
request_tags=request_tags, tags_to_add=tags_to_add
)
assert isinstance(result, list)
assert sorted(result) == sorted(expected_tags)
@pytest.mark.asyncio
@pytest.mark.parametrize(
"key_tags, request_tags, expected_tags",
[
# exact duplicates
(["tag1", "tag2", "tag3"], ["tag1", "tag2", "tag3"], ["tag1", "tag2", "tag3"]),
# partial duplicates
(
["tag1", "tag2", "tag3"],
["tag2", "tag3", "tag4"],
["tag1", "tag2", "tag3", "tag4"],
),
# duplicates within key tags
(["tag1", "tag2"], ["tag3", "tag4"], ["tag1", "tag2", "tag3", "tag4"]),
# duplicates within request tags
(["tag1", "tag2"], ["tag2", "tag3", "tag4"], ["tag1", "tag2", "tag3", "tag4"]),
# case sensitive duplicates
(["Tag1", "TAG2"], ["tag1", "tag2"], ["Tag1", "TAG2", "tag1", "tag2"]),
],
)
async def test_add_litellm_data_to_request_duplicate_tags(
key_tags, request_tags, expected_tags
):
"""
Test to verify duplicate tags between request and key metadata are handled correctly
Aggregation logic when checking spend can be impacted if duplicate tags are not handled correctly.
User feedback:
"If I register my key with tag1 and
also pass the same tag1 when using the key
then I see tag1 twice in the
LiteLLM_SpendLogs table request_tags column. This can mess up aggregation logic"
"""
mock_request = Mock(spec=Request)
mock_request.url.path = "/chat/completions"
mock_request.query_params = {}
mock_request.headers = {}
# Setup key with tags in metadata
user_api_key_dict = UserAPIKeyAuth(
api_key="test_api_key",
user_id="test_user_id",
org_id="test_org_id",
metadata={"tags": key_tags},
)
# Setup request data with tags
data = {"metadata": {"tags": request_tags}}
# Process request
proxy_config = Mock()
result = await add_litellm_data_to_request(
data=data,
request=mock_request,
user_api_key_dict=user_api_key_dict,
proxy_config=proxy_config,
)
# Verify results
assert "metadata" in result
assert "tags" in result["metadata"]
assert sorted(result["metadata"]["tags"]) == sorted(
expected_tags
), f"Expected {expected_tags}, got {result['metadata']['tags']}"
@pytest.mark.parametrize(
"general_settings, user_api_key_dict, expected_enforced_params",
[
(
{"enforced_params": ["param1", "param2"]},
UserAPIKeyAuth(
api_key="test_api_key", user_id="test_user_id", org_id="test_org_id"
),
["param1", "param2"],
),
(
{"service_account_settings": {"enforced_params": ["param1", "param2"]}},
UserAPIKeyAuth(
api_key="test_api_key", user_id="test_user_id", org_id="test_org_id"
),
["param1", "param2"],
),
(
{"service_account_settings": {"enforced_params": ["param1", "param2"]}},
UserAPIKeyAuth(
api_key="test_api_key",
metadata={"enforced_params": ["param3", "param4"]},
),
["param1", "param2", "param3", "param4"],
),
],
)
def test_get_enforced_params(
general_settings, user_api_key_dict, expected_enforced_params
):
from litellm.proxy.litellm_pre_call_utils import _get_enforced_params
enforced_params = _get_enforced_params(general_settings, user_api_key_dict)
assert enforced_params == expected_enforced_params
@pytest.mark.parametrize(
"general_settings, user_api_key_dict, request_body, expected_error",
[
(
{"enforced_params": ["param1", "param2"]},
UserAPIKeyAuth(
api_key="test_api_key", user_id="test_user_id", org_id="test_org_id"
),
{},
True,
),
(
{"service_account_settings": {"enforced_params": ["user"]}},
UserAPIKeyAuth(
api_key="test_api_key", user_id="test_user_id", org_id="test_org_id"
),
{},
True,
),
(
{},
UserAPIKeyAuth(
api_key="test_api_key",
metadata={"enforced_params": ["user"]},
),
{},
True,
),
(
{},
UserAPIKeyAuth(
api_key="test_api_key",
metadata={"enforced_params": ["user"]},
),
{"user": "test_user"},
False,
),
(
{"enforced_params": ["user"]},
UserAPIKeyAuth(
api_key="test_api_key",
),
{"user": "test_user"},
False,
),
(
{"service_account_settings": {"enforced_params": ["user"]}},
UserAPIKeyAuth(
api_key="test_api_key",
),
{"user": "test_user"},
False,
),
(
{"enforced_params": ["metadata.generation_name"]},
UserAPIKeyAuth(
api_key="test_api_key",
),
{"metadata": {}},
True,
),
(
{"enforced_params": ["metadata.generation_name"]},
UserAPIKeyAuth(
api_key="test_api_key",
),
{"metadata": {"generation_name": "test_generation_name"}},
False,
),
],
)
def test_enforced_params_check(
general_settings, user_api_key_dict, request_body, expected_error
):
from litellm.proxy.litellm_pre_call_utils import _enforced_params_check
if expected_error:
with pytest.raises(ValueError):
_enforced_params_check(
request_body=request_body,
general_settings=general_settings,
user_api_key_dict=user_api_key_dict,
premium_user=True,
)
else:
_enforced_params_check(
request_body=request_body,
general_settings=general_settings,
user_api_key_dict=user_api_key_dict,
premium_user=True,
)
def test_get_key_models():
from collections import defaultdict
from litellm.proxy.auth.model_checks import get_key_models
user_api_key_dict = UserAPIKeyAuth(
api_key="test_api_key",
user_id="test_user_id",
org_id="test_org_id",
models=["default"],
)
proxy_model_list = ["gpt-4o", "gpt-3.5-turbo"]
model_access_groups = defaultdict(list)
model_access_groups["default"].extend(["gpt-4o", "gpt-3.5-turbo"])
model_access_groups["default"].extend(["gpt-4o-mini"])
model_access_groups["team2"].extend(["gpt-3.5-turbo"])
result = get_key_models(
user_api_key_dict=user_api_key_dict,
proxy_model_list=proxy_model_list,
model_access_groups=model_access_groups,
)
assert result == ["gpt-4o", "gpt-3.5-turbo", "gpt-4o-mini"]
def test_get_team_models():
from collections import defaultdict
from litellm.proxy.auth.model_checks import get_team_models
user_api_key_dict = UserAPIKeyAuth(
api_key="test_api_key",
user_id="test_user_id",
org_id="test_org_id",
models=[],
team_models=["default"],
)
proxy_model_list = ["gpt-4o", "gpt-3.5-turbo"]
model_access_groups = defaultdict(list)
model_access_groups["default"].extend(["gpt-4o", "gpt-3.5-turbo"])
model_access_groups["default"].extend(["gpt-4o-mini"])
model_access_groups["team2"].extend(["gpt-3.5-turbo"])
result = get_team_models(
user_api_key_dict=user_api_key_dict,
proxy_model_list=proxy_model_list,
model_access_groups=model_access_groups,
)
assert result == ["gpt-4o", "gpt-3.5-turbo", "gpt-4o-mini"]
def test_update_config_fields():
from litellm.proxy.proxy_server import ProxyConfig
proxy_config = ProxyConfig()
args = {
"current_config": {
"litellm_settings": {
"default_team_settings": [
{
"team_id": "c91e32bb-0f2a-4aa1-86c4-307ca2e03ea3",
"success_callback": ["langfuse"],
"failure_callback": ["langfuse"],
"langfuse_public_key": "my-fake-key",
"langfuse_secret": "my-fake-secret",
}
]
},
},
"param_name": "litellm_settings",
"db_param_value": {
"telemetry": False,
"drop_params": True,
"num_retries": 5,
"request_timeout": 600,
"success_callback": ["langfuse"],
"default_team_settings": [],
"context_window_fallbacks": [{"gpt-3.5-turbo": ["gpt-3.5-turbo-large"]}],
},
}
updated_config = proxy_config._update_config_fields(**args)
all_team_config = updated_config["litellm_settings"]["default_team_settings"]
# check if team id config returned
team_config = proxy_config._get_team_config(
team_id="c91e32bb-0f2a-4aa1-86c4-307ca2e03ea3", all_teams_config=all_team_config
)
assert team_config["langfuse_public_key"] == "my-fake-key"
assert team_config["langfuse_secret"] == "my-fake-secret"
@pytest.mark.parametrize(
"proxy_model_list,provider",
[
(["openai/*"], "openai"),
(["bedrock/*"], "bedrock"),
(["anthropic/*"], "anthropic"),
(["cohere/*"], "cohere"),
],
)
def test_get_complete_model_list(proxy_model_list, provider):
"""
Test that get_complete_model_list correctly expands model groups like 'openai/*' into individual models with provider prefixes
"""
from litellm.proxy.auth.model_checks import get_complete_model_list
complete_list = get_complete_model_list(
proxy_model_list=proxy_model_list,
key_models=[],
team_models=[],
user_model=None,
infer_model_from_keys=False,
)
# Check that we got a non-empty list back
assert len(complete_list) > 0
print("complete_list", json.dumps(complete_list, indent=4))
for _model in complete_list:
assert provider in _model
def test_team_callback_metadata_all_none_values():
from litellm.proxy._types import TeamCallbackMetadata
resp = TeamCallbackMetadata(
success_callback=None,
failure_callback=None,
callback_vars=None,
)
assert resp.success_callback == []
assert resp.failure_callback == []
assert resp.callback_vars == {}
@pytest.mark.parametrize(
"none_key",
[
"success_callback",
"failure_callback",
"callback_vars",
],
)
def test_team_callback_metadata_none_values(none_key):
from litellm.proxy._types import TeamCallbackMetadata
if none_key == "success_callback":
args = {
"success_callback": None,
"failure_callback": ["test"],
"callback_vars": None,
}
elif none_key == "failure_callback":
args = {
"success_callback": ["test"],
"failure_callback": None,
"callback_vars": None,
}
elif none_key == "callback_vars":
args = {
"success_callback": ["test"],
"failure_callback": ["test"],
"callback_vars": None,
}
resp = TeamCallbackMetadata(**args)
assert none_key not in resp
def test_proxy_config_state_post_init_callback_call():
"""
Ensures team_id is still in config, after callback is called
Addresses issue: https://github.com/BerriAI/litellm/issues/6787
Where team_id was being popped from config, after callback was called
"""
from litellm.proxy.litellm_pre_call_utils import LiteLLMProxyRequestSetup
from litellm.proxy.proxy_server import ProxyConfig
pc = ProxyConfig()
pc.update_config_state(
config={
"litellm_settings": {
"default_team_settings": [
{
"team_id": "test",
"success_callback": ["langfuse"],
"langfuse_public_key": "os.environ/LANGFUSE_PUBLIC_KEY",
"langfuse_secret": "os.environ/LANGFUSE_SECRET_KEY",
}
]
}
}
)
LiteLLMProxyRequestSetup.add_team_based_callbacks_from_config(
team_id="test",
proxy_config=pc,
)
config = pc.get_config_state()
assert config["litellm_settings"]["default_team_settings"][0]["team_id"] == "test"
def test_proxy_config_state_get_config_state_error():
"""
Ensures that get_config_state does not raise an error when the config is not a valid dictionary
"""
import threading
from litellm.proxy.proxy_server import ProxyConfig
test_config = {
"callback_list": [
{
"lock": threading.RLock(), # This will cause the deep copy to fail
"name": "test_callback",
}
],
"model_list": ["gpt-4", "claude-3"],
}
pc = ProxyConfig()
pc.config = test_config
config = pc.get_config_state()
assert config == {}
@pytest.mark.parametrize(
"associated_budget_table, expected_user_api_key_auth_key, expected_user_api_key_auth_value",
[
(
{
"litellm_budget_table_max_budget": None,
"litellm_budget_table_tpm_limit": None,
"litellm_budget_table_rpm_limit": 1,
"litellm_budget_table_model_max_budget": None,
},
"rpm_limit",
1,
),
(
{},
None,
None,
),
(
{
"litellm_budget_table_max_budget": None,
"litellm_budget_table_tpm_limit": None,
"litellm_budget_table_rpm_limit": None,
"litellm_budget_table_model_max_budget": {"gpt-4o": 100},
},
"model_max_budget",
{"gpt-4o": 100},
),
],
)
def test_litellm_verification_token_view_response_with_budget_table(
associated_budget_table,
expected_user_api_key_auth_key,
expected_user_api_key_auth_value,
):
from litellm.proxy._types import LiteLLM_VerificationTokenView
args: Dict[str, Any] = {
"token": "78b627d4d14bc3acf5571ae9cb6834e661bc8794d1209318677387add7621ce1",
"key_name": "sk-...if_g",
"key_alias": None,
"soft_budget_cooldown": False,
"spend": 0.011441999999999997,
"expires": None,
"models": [],
"aliases": {},
"config": {},
"user_id": None,
"team_id": "test",
"permissions": {},
"max_parallel_requests": None,
"metadata": {},
"blocked": None,
"tpm_limit": None,
"rpm_limit": None,
"max_budget": None,
"budget_duration": None,
"budget_reset_at": None,
"allowed_cache_controls": [],
"model_spend": {},
"model_max_budget": {},
"budget_id": "my-test-tier",
"created_at": "2024-12-26T02:28:52.615+00:00",
"updated_at": "2024-12-26T03:01:51.159+00:00",
"team_spend": 0.012134999999999998,
"team_max_budget": None,
"team_tpm_limit": None,
"team_rpm_limit": None,
"team_models": [],
"team_metadata": {},
"team_blocked": False,
"team_alias": None,
"team_members_with_roles": [{"role": "admin", "user_id": "default_user_id"}],
"team_member_spend": None,
"team_model_aliases": None,
"team_member": None,
**associated_budget_table,
}
resp = LiteLLM_VerificationTokenView(**args)
if expected_user_api_key_auth_key is not None:
assert (
getattr(resp, expected_user_api_key_auth_key)
== expected_user_api_key_auth_value
)
def test_is_allowed_to_make_key_request():
from litellm.proxy._types import LitellmUserRoles
from litellm.proxy.management_endpoints.key_management_endpoints import (
_is_allowed_to_make_key_request,
)
assert (
_is_allowed_to_make_key_request(
user_api_key_dict=UserAPIKeyAuth(
user_id="test_user_id", user_role=LitellmUserRoles.PROXY_ADMIN
),
user_id="test_user_id",
team_id="test_team_id",
)
is True
)
assert (
_is_allowed_to_make_key_request(
user_api_key_dict=UserAPIKeyAuth(
user_id="test_user_id",
user_role=LitellmUserRoles.INTERNAL_USER,
team_id="litellm-dashboard",
),
user_id="test_user_id",
team_id="test_team_id",
)
is True
)
def test_get_model_group_info():
from litellm import Router
from litellm.proxy.proxy_server import _get_model_group_info
router = Router(
model_list=[
{
"model_name": "openai/tts-1",
"litellm_params": {
"model": "openai/tts-1",
"api_key": "sk-1234",
},
},
{
"model_name": "openai/gpt-3.5-turbo",
"litellm_params": {
"model": "openai/gpt-3.5-turbo",
"api_key": "sk-1234",
},
},
]
)
model_list = _get_model_group_info(
llm_router=router,
all_models_str=["openai/tts-1", "openai/gpt-3.5-turbo"],
model_group="openai/tts-1",
)
assert len(model_list) == 1
import asyncio
import json
from unittest.mock import AsyncMock, patch
import pytest
@pytest.fixture
def mock_team_data():
return [
{"team_id": "team1", "team_name": "Test Team 1"},
{"team_id": "team2", "team_name": "Test Team 2"},
]
@pytest.fixture
def mock_key_data():
return [
{"token": "test_token_1", "key_name": "key1", "team_id": None, "spend": 0},
{"token": "test_token_2", "key_name": "key2", "team_id": "team1", "spend": 100},
{
"token": "test_token_3",
"key_name": "key3",
"team_id": "litellm-dashboard",
"spend": 50,
},
]
class MockDb:
def __init__(self, mock_team_data, mock_key_data):
self.mock_team_data = mock_team_data
self.mock_key_data = mock_key_data
async def query_raw(self, query: str, *args):
# Simulate the SQL query response
filtered_keys = [
k
for k in self.mock_key_data
if k["team_id"] != "litellm-dashboard" or k["team_id"] is None
]
return [{"teams": self.mock_team_data, "keys": filtered_keys}]
class MockPrismaClientDB:
def __init__(
self,
mock_team_data,
mock_key_data,
):
self.db = MockDb(mock_team_data, mock_key_data)
@pytest.mark.asyncio
async def test_get_user_info_for_proxy_admin(mock_team_data, mock_key_data):
# Patch the prisma_client import
from litellm.proxy._types import UserInfoResponse
with patch(
"litellm.proxy.proxy_server.prisma_client",
MockPrismaClientDB(mock_team_data, mock_key_data),
):
from litellm.proxy.management_endpoints.internal_user_endpoints import (
_get_user_info_for_proxy_admin,
)
# Execute the function
result = await _get_user_info_for_proxy_admin()
# Verify the result structure
assert isinstance(result, UserInfoResponse)
assert len(result.keys) == 2
def test_custom_openid_response():
from litellm.caching import DualCache
from litellm.proxy._types import LiteLLM_JWTAuth
from litellm.proxy.management_endpoints.ui_sso import (
JWTHandler,
generic_response_convertor,
)
jwt_handler = JWTHandler()
jwt_handler.update_environment(
prisma_client={},
user_api_key_cache=DualCache(),
litellm_jwtauth=LiteLLM_JWTAuth(
team_ids_jwt_field="department",
),
)
response = {
"sub": "3f196e06-7484-451e-be5a-ea6c6bb86c5b",
"email_verified": True,
"name": "Krish Dholakia",
"preferred_username": "krrishd",
"given_name": "Krish",
"department": ["/test-group"],
"family_name": "Dholakia",
"email": "krrishdholakia@gmail.com",
}
resp = generic_response_convertor(
response=response,
jwt_handler=jwt_handler,
)
assert resp.team_ids == ["/test-group"]
def test_update_key_request_validation():
"""
Ensures that the UpdateKeyRequest model validates the temp_budget_increase and temp_budget_expiry fields together
"""
from litellm.proxy._types import UpdateKeyRequest
with pytest.raises(Exception):
UpdateKeyRequest(
key="test_key",
temp_budget_increase=100,
)
with pytest.raises(Exception):
UpdateKeyRequest(
key="test_key",
temp_budget_expiry="2024-01-20T00:00:00Z",
)
UpdateKeyRequest(
key="test_key",
temp_budget_increase=100,
temp_budget_expiry="2024-01-20T00:00:00Z",
)
def test_get_temp_budget_increase():
from datetime import datetime, timedelta
from litellm.proxy._types import UserAPIKeyAuth
from litellm.proxy.auth.user_api_key_auth import _get_temp_budget_increase
expiry = datetime.now() + timedelta(days=1)
expiry_in_isoformat = expiry.isoformat()
valid_token = UserAPIKeyAuth(
max_budget=100,
spend=0,
metadata={
"temp_budget_increase": 100,
"temp_budget_expiry": expiry_in_isoformat,
},
)
assert _get_temp_budget_increase(valid_token) == 100
def test_update_key_budget_with_temp_budget_increase():
from datetime import datetime, timedelta
from litellm.proxy._types import UserAPIKeyAuth
from litellm.proxy.auth.user_api_key_auth import (
_update_key_budget_with_temp_budget_increase,
)
expiry = datetime.now() + timedelta(days=1)
expiry_in_isoformat = expiry.isoformat()
valid_token = UserAPIKeyAuth(
max_budget=100,
spend=0,
metadata={
"temp_budget_increase": 100,
"temp_budget_expiry": expiry_in_isoformat,
},
)
assert _update_key_budget_with_temp_budget_increase(valid_token).max_budget == 200
from unittest.mock import AsyncMock, MagicMock
@pytest.mark.asyncio
async def test_health_check_not_called_when_disabled(monkeypatch):
from litellm.proxy.proxy_server import ProxyStartupEvent
# Mock environment variable
monkeypatch.setenv("DISABLE_PRISMA_HEALTH_CHECK_ON_STARTUP", "true")
# Create mock prisma client
mock_prisma = MagicMock()
mock_prisma.connect = AsyncMock()
mock_prisma.health_check = AsyncMock()
mock_prisma.check_view_exists = AsyncMock()
mock_prisma._set_spend_logs_row_count_in_proxy_state = AsyncMock()
# Mock PrismaClient constructor
monkeypatch.setattr(
"litellm.proxy.proxy_server.PrismaClient", lambda **kwargs: mock_prisma
)
# Call the setup function
await ProxyStartupEvent._setup_prisma_client(
database_url="mock_url",
proxy_logging_obj=MagicMock(),
user_api_key_cache=MagicMock(),
)
# Verify health check wasn't called
mock_prisma.health_check.assert_not_called()
@patch(
"litellm.proxy.proxy_server.get_openapi_schema",
return_value={
"paths": {
"/new/route": {"get": {"summary": "New"}},
}
},
)
def test_custom_openapi(mock_get_openapi_schema):
from litellm.proxy.proxy_server import app, custom_openapi
openapi_schema = custom_openapi()
assert openapi_schema is not None
import asyncio
from datetime import timedelta
from unittest.mock import AsyncMock, MagicMock
import pytest
from litellm.proxy.utils import ProxyUpdateSpend
@pytest.mark.asyncio
async def test_end_user_transactions_reset():
# Setup
mock_client = MagicMock()
mock_client.end_user_list_transactons = {"1": 10.0} # Bad log
mock_client.db.tx = AsyncMock(side_effect=Exception("DB Error"))
# Call function - should raise error
with pytest.raises(Exception):
await ProxyUpdateSpend.update_end_user_spend(
n_retry_times=0, prisma_client=mock_client, proxy_logging_obj=MagicMock()
)
# Verify cleanup happened
assert (
mock_client.end_user_list_transactons == {}
), "Transactions list should be empty after error"
@pytest.mark.asyncio
async def test_spend_logs_cleanup_after_error():
# Setup test data
mock_client = MagicMock()
mock_client.spend_log_transactions = [
{"id": 1, "amount": 10.0},
{"id": 2, "amount": 20.0},
{"id": 3, "amount": 30.0},
]
# Make the DB operation fail
mock_client.db.litellm_spendlogs.create_many = AsyncMock(
side_effect=Exception("DB Error")
)
original_logs = mock_client.spend_log_transactions.copy()
# Call function - should raise error
with pytest.raises(Exception):
await ProxyUpdateSpend.update_spend_logs(
n_retry_times=0,
prisma_client=mock_client,
db_writer_client=None, # Test DB write path
proxy_logging_obj=MagicMock(),
)
# Verify the first batch was removed from spend_log_transactions
assert (
mock_client.spend_log_transactions == original_logs[100:]
), "Should remove processed logs even after error"
def test_provider_specific_header():
from litellm.proxy.litellm_pre_call_utils import (
add_provider_specific_headers_to_request,
)
data = {
"model": "gemini-1.5-flash",
"messages": [
{
"role": "user",
"content": [{"type": "text", "text": "Tell me a joke"}],
}
],
"stream": True,
"proxy_server_request": {
"url": "http://0.0.0.0:4000/v1/chat/completions",
"method": "POST",
"headers": {
"content-type": "application/json",
"anthropic-beta": "prompt-caching-2024-07-31",
"user-agent": "PostmanRuntime/7.32.3",
"accept": "*/*",
"postman-token": "81cccd87-c91d-4b2f-b252-c0fe0ca82529",
"host": "0.0.0.0:4000",
"accept-encoding": "gzip, deflate, br",
"connection": "keep-alive",
"content-length": "240",
},
"body": {
"model": "gemini-1.5-flash",
"messages": [
{
"role": "user",
"content": [{"type": "text", "text": "Tell me a joke"}],
}
],
"stream": True,
},
},
}
headers = {
"content-type": "application/json",
"anthropic-beta": "prompt-caching-2024-07-31",
"user-agent": "PostmanRuntime/7.32.3",
"accept": "*/*",
"postman-token": "81cccd87-c91d-4b2f-b252-c0fe0ca82529",
"host": "0.0.0.0:4000",
"accept-encoding": "gzip, deflate, br",
"connection": "keep-alive",
"content-length": "240",
}
add_provider_specific_headers_to_request(
data=data,
headers=headers,
)
assert data["provider_specific_header"] == {
"custom_llm_provider": "anthropic",
"extra_headers": {
"anthropic-beta": "prompt-caching-2024-07-31",
},
}
async def create_budget(session, data):
url = "http://0.0.0.0:4000/budget/new"
headers = {"Authorization": "Bearer sk-1234", "Content-Type": "application/json"}
async with session.post(url, headers=headers, json=data) as response:
assert response.status == 200
response_data = await response.json()
budget_id = response_data["budget_id"]
print(f"Created Budget {budget_id}")
return response_data
async def create_end_user(prisma_client, session, user_id, budget_id, spend=None):
url = "http://0.0.0.0:4000/end_user/new"
headers = {"Authorization": "Bearer sk-1234", "Content-Type": "application/json"}
data = {
"user_id": user_id,
"budget_id": budget_id,
}
async with session.post(url, headers=headers, json=data) as response:
assert response.status == 200
response_data = await response.json()
end_user_id = response_data["user_id"]
print(f"Created End User {end_user_id}")
if spend is not None:
end_users = await prisma_client.get_data(
table_name="enduser",
query_type="find_all",
budget_id_list=[budget_id],
)
end_user = [user for user in end_users if user.user_id == user_id][0]
end_user.spend = spend
await prisma_client.update_data(
query_type="update_many",
data_list=[end_user],
table_name="enduser",
)
return response_data
async def delete_budget(session, budget_id):
url = "http://0.0.0.0:4000/budget/delete"
headers = {"Authorization": "Bearer sk-1234", "Content-Type": "application/json"}
data = {"id": budget_id}
async with session.post(url, headers=headers, json=data) as response:
assert response.status == 200
print(f"Deleted Budget {budget_id}")
async def delete_end_user(session, user_id):
url = "http://0.0.0.0:4000/end_user/delete"
headers = {"Authorization": "Bearer sk-1234", "Content-Type": "application/json"}
data = {"user_ids": [user_id]}
async with session.post(url, headers=headers, json=data) as response:
assert response.status == 200
print(f"Deleted End User {user_id}")
@pytest.fixture
def prisma_client():
proxy_logging_obj = ProxyLogging(user_api_key_cache=DualCache())
prisma_client = PrismaClient(
database_url=os.environ["DATABASE_URL"], proxy_logging_obj=proxy_logging_obj
)
return prisma_client
@pytest_asyncio.fixture
async def budget_and_enduser_setup(prisma_client):
"""
Fixture to set up budgets and end users for testing and clean them up afterward.
This fixture performs the following:
- Creates two budgets:
* Budget X with a short duration ("5s").
* Budget Y with a long duration ("30d").
- Stores the initial 'budget_reset_at' timestamps for both budgets.
- Creates three end users:
* End Users A and B are associated with Budget X and are given initial spend values.
* End User C is associated with Budget Y with an initial spend.
- After the test (after the yield), the created end users and budgets are deleted.
"""
await prisma_client.connect()
async with aiohttp.ClientSession() as session:
# Create budgets
id_budget_x = f"budget-{uuid.uuid4()}"
data_budget_x = {
"budget_id": id_budget_x,
"budget_duration": "5s",
"max_budget": 2,
}
id_budget_y = f"budget-{uuid.uuid4()}"
data_budget_y = {
"budget_id": id_budget_y,
"budget_duration": "30d",
"max_budget": 1,
}
response_budget_x = await create_budget(session, data_budget_x)
initial_budget_x_reset_at_date = datetime.fromisoformat(
response_budget_x["budget_reset_at"]
)
response_budget_y = await create_budget(session, data_budget_y)
initial_budget_y_reset_at_date = datetime.fromisoformat(
response_budget_y["budget_reset_at"]
)
# Create end users
id_end_user_a = f"test-user-{uuid.uuid4()}"
id_end_user_b = f"test-user-{uuid.uuid4()}"
id_end_user_c = f"test-user-{uuid.uuid4()}"
await create_end_user(
prisma_client, session, id_end_user_a, id_budget_x, spend=0.16
)
await create_end_user(
prisma_client, session, id_end_user_b, id_budget_x, spend=0.04
)
await create_end_user(
prisma_client, session, id_end_user_c, id_budget_y, spend=0.2
)
# Bundle data needed for the test
setup_data = {
"budgets": {
"id_budget_x": id_budget_x,
"id_budget_y": id_budget_y,
"initial_budget_x_reset_at_date": initial_budget_x_reset_at_date,
"initial_budget_y_reset_at_date": initial_budget_y_reset_at_date,
},
"end_users": {
"id_end_user_a": id_end_user_a,
"id_end_user_b": id_end_user_b,
"id_end_user_c": id_end_user_c,
},
}
# Provide the setup data to the test
yield setup_data
# Clean-up: Delete the created test data
await delete_end_user(session, id_end_user_a)
await delete_end_user(session, id_end_user_b)
await delete_end_user(session, id_end_user_c)
await delete_budget(session, id_budget_x)
await delete_budget(session, id_budget_y)
@pytest.mark.asyncio
async def test_reset_budget_for_endusers(prisma_client, budget_and_enduser_setup):
"""
Test the part "Reset End-User (Customer) Spend and corresponding Budget duration" in reset_budget function.
This test uses the budget_and_enduser_setup fixture to create budgets and end users,
waits for the short-duration budget to expire, calls reset_budget, and verifies that:
- End users associated with the short-duration budget X have their spend reset to 0.
- The budget_reset_at timestamp for the short-duration budget X is updated,
while the long-duration budget Y remains unchanged.
"""
# Unpack the required data from the fixture
budgets = budget_and_enduser_setup["budgets"]
end_users = budget_and_enduser_setup["end_users"]
id_budget_x = budgets["id_budget_x"]
id_budget_y = budgets["id_budget_y"]
initial_budget_x_reset_at_date = budgets["initial_budget_x_reset_at_date"]
initial_budget_y_reset_at_date = budgets["initial_budget_y_reset_at_date"]
id_end_user_a = end_users["id_end_user_a"]
id_end_user_b = end_users["id_end_user_b"]
id_end_user_c = end_users["id_end_user_c"]
# Wait for Budget X to expire (short duration "5s" plus a small buffer)
await asyncio.sleep(6)
# Call the reset_budget function:
# It should reset the spend values for end users associated with Budget X.
await reset_budget(prisma_client)
# Retrieve updated data for end users
updated_end_users = await prisma_client.get_data(
table_name="enduser",
query_type="find_all",
budget_id_list=[id_budget_x, id_budget_y],
)
# Retrieve updated data for budgets
updated_budgets = await prisma_client.get_data(
table_name="budget",
query_type="find_all",
reset_at=datetime.now() + timedelta(days=31),
)
# Assertions for end users
user_a = [user for user in updated_end_users if user.user_id == id_end_user_a][0]
user_b = [user for user in updated_end_users if user.user_id == id_end_user_b][0]
user_c = [user for user in updated_end_users if user.user_id == id_end_user_c][0]
assert user_a.spend == 0, "Spend for end_user_a was not reset to 0"
assert user_b.spend == 0, "Spend for end_user_b was not reset to 0"
assert user_c.spend > 0, "Spend for end_user_c should not be reset"
# Assertions for budgets
budget_x = [
budget for budget in updated_budgets if budget.budget_id == id_budget_x
][0]
budget_y = [
budget for budget in updated_budgets if budget.budget_id == id_budget_y
][0]
assert (
budget_x.budget_reset_at > initial_budget_x_reset_at_date
), "Budget X budget_reset_at was not updated"
assert (
budget_y.budget_reset_at == initial_budget_y_reset_at_date
), "Budget Y budget_reset_at should remain unchanged"
@pytest.mark.parametrize(
"wildcard_model, expected_models",
[
(
"anthropic/*",
["anthropic/claude-3-5-haiku-20241022", "anthropic/claude-3-opus-20240229"],
),
(
"vertex_ai/gemini-*",
["vertex_ai/gemini-1.5-flash", "vertex_ai/gemini-1.5-pro"],
),
],
)
def test_get_known_models_from_wildcard(wildcard_model, expected_models):
from litellm.proxy.auth.model_checks import get_known_models_from_wildcard
wildcard_models = get_known_models_from_wildcard(wildcard_model=wildcard_model)
# Check if all expected models are in the returned list
print(f"wildcard_models: {wildcard_models}\n")
for model in expected_models:
if model not in wildcard_models:
print(f"Missing expected model: {model}")
assert all(model in wildcard_models for model in expected_models)
@pytest.mark.parametrize(
"data, user_api_key_dict, expected_model",
[
# Test case 1: Model exists in team aliases
(
{"model": "gpt-4o"},
UserAPIKeyAuth(
api_key="test_key", team_model_aliases={"gpt-4o": "gpt-4o-team-1"}
),
"gpt-4o-team-1",
),
# Test case 2: Model doesn't exist in team aliases
(
{"model": "gpt-4o"},
UserAPIKeyAuth(
api_key="test_key", team_model_aliases={"claude-3": "claude-3-team-1"}
),
"gpt-4o",
),
# Test case 3: No team aliases defined
(
{"model": "gpt-4o"},
UserAPIKeyAuth(api_key="test_key", team_model_aliases=None),
"gpt-4o",
),
# Test case 4: No model in request data
(
{"messages": []},
UserAPIKeyAuth(
api_key="test_key", team_model_aliases={"gpt-4o": "gpt-4o-team-1"}
),
None,
),
],
)
def test_update_model_if_team_alias_exists(data, user_api_key_dict, expected_model):
from litellm.proxy.litellm_pre_call_utils import _update_model_if_team_alias_exists
# Make a copy of the input data to avoid modifying the test parameters
test_data = data.copy()
# Call the function
_update_model_if_team_alias_exists(
data=test_data, user_api_key_dict=user_api_key_dict
)
# Check if model was updated correctly
assert test_data.get("model") == expected_model